Implements robust accelerated failure time (AFT) models with M-estimation and resistant estimators. Provides outlier-resistant estimation for parametric survival models when standard AFT models are sensitive to extreme observations or model misspecification, ensuring reliable parameter estimates in challenging clinical datasets.
Usage
robustaft(
  data,
  elapsedtime,
  outcome,
  covariates,
  outcomeLevel = "1",
  distribution = "weibull",
  robust_method = "huber",
  tuning_constant = 1.345,
  efficiency_target = 0.95,
  scale_estimation = "mad",
  stratify_variable,
  weights_variable,
  confidence_level = 0.95,
  max_iterations = 100,
  convergence_tolerance = 1e-06,
  outlier_detection = TRUE,
  outlier_threshold = 2.5,
  bootstrap_ci = FALSE,
  bootstrap_samples = 500,
  show_model_summary = TRUE,
  show_coefficients = TRUE,
  show_outliers = TRUE,
  show_diagnostics = TRUE,
  show_comparison = TRUE,
  show_residual_plots = TRUE,
  show_outlier_plots = TRUE,
  show_survival_plots = TRUE,
  show_qq_plots = TRUE,
  showSummaries = FALSE,
  showExplanations = FALSE
)Arguments
- data
- the data as a data frame 
- elapsedtime
- Survival time or follow-up duration variable 
- outcome
- Event indicator variable (0/1, FALSE/TRUE, or factor) 
- covariates
- Predictor variables for the AFT model 
- outcomeLevel
- Level of outcome variable indicating event occurrence 
- distribution
- Parametric distribution for AFT model 
- robust_method
- Robust estimation method for outlier resistance 
- tuning_constant
- Tuning constant controlling robustness vs efficiency 
- efficiency_target
- Target efficiency relative to non-robust estimator 
- scale_estimation
- Method for robust scale estimation 
- stratify_variable
- Variable for stratified analysis 
- weights_variable
- Observation weights variable 
- confidence_level
- Confidence level for intervals 
- max_iterations
- Maximum number of iterations 
- convergence_tolerance
- Convergence tolerance for estimation 
- outlier_detection
- Automatically detect and flag outliers 
- outlier_threshold
- Threshold for outlier detection 
- bootstrap_ci
- Compute bootstrap confidence intervals 
- bootstrap_samples
- Number of bootstrap samples 
- show_model_summary
- Display comprehensive model summary 
- show_coefficients
- Display coefficient estimates table 
- show_outliers
- Display outlier detection results 
- show_diagnostics
- Display model diagnostics 
- show_comparison
- Compare robust vs standard AFT models 
- show_residual_plots
- Display residual diagnostic plots 
- show_outlier_plots
- Display outlier identification plots 
- show_survival_plots
- Display survival curves 
- show_qq_plots
- Display quantile-quantile plots 
- showSummaries
- Generate natural language summaries 
- showExplanations
- Show detailed methodology explanations 
Value
A results object containing:
| results$modelSummary | a table | ||||
| results$coefficients | a table | ||||
| results$outlierAnalysis | a table | ||||
| results$diagnostics | a table | ||||
| results$modelComparison | a table | ||||
| results$robustnessInfo | a table | ||||
| results$scaleEstimates | a table | ||||
| results$outlierTable | a table | ||||
| results$residualPlots | an image | ||||
| results$outlierPlots | an image | ||||
| results$survivalPlots | an image | ||||
| results$qqPlots | an image | ||||
| results$summaryTable | a html | ||||
| results$methodExplanation | a html | 
Tables can be converted to data frames with asDF or as.data.frame. For example:
results$modelSummary$asDF
as.data.frame(results$modelSummary)
Examples
# Example: Robust AFT model with Weibull distribution
library(survival)
library(RobustAFT)
robustaft(
    data = clinical_data,
    elapsedtime = "time",
    outcome = "status",
    outcomeLevel = "1",
    covariates = c("age", "treatment", "biomarker"),
    distribution = "weibull",
    robust_method = "huber",
    tuning_constant = 1.345
)