Skip to contents

Comprehensive robust correlation analysis with multiple correlation methods, outlier detection, diagnostic plots, and bootstrap confidence intervals. Includes Spearman, Kendall, Percentage Bend, Biweight Midcorrelation, Minimum Volume Ellipsoid (MVE), and Minimum Covariance Determinant (MCD) correlation methods.

Usage

robustcorrelation(
  data,
  dep,
  method = "spearman",
  matrix_type = "upper",
  show_pvalues = TRUE,
  sig_level = 0.05,
  p_adjust_method = "none",
  outlier_detection = FALSE,
  outlier_method = "mcd",
  outlier_threshold = 2.5,
  bootstrap_ci = FALSE,
  n_bootstrap = 1000,
  confidence_level = 0.95,
  show_heatmap = TRUE,
  heatmap_colors = "blue_white_red",
  low_color = "#3B82C5",
  mid_color = "white",
  high_color = "#E74C3C",
  show_diagnostics = FALSE,
  plot_width = 600,
  plot_height = 450,
  decimal_places = 3
)

Arguments

data

The data as a data frame.

dep

List of continuous variables for robust correlation analysis. All variables must be numeric with sufficient variation.

method

Robust correlation method to use. Spearman and Kendall are rank-based, percentage bend and biweight are robust to outliers, MVE and MCD are based on robust covariance estimation.

matrix_type

Display type for correlation matrix.

show_pvalues

Display significance p-values in correlation matrix.

sig_level

Significance level for correlation tests.

p_adjust_method

Method for adjusting p-values for multiple testing.

outlier_detection

Perform outlier detection analysis.

outlier_method

Method for detecting outliers in the data.

outlier_threshold

Threshold for outlier detection (in standard deviations or equivalent).

bootstrap_ci

Calculate bootstrap confidence intervals for correlations.

n_bootstrap

Number of bootstrap iterations for confidence intervals.

confidence_level

Confidence level for bootstrap intervals.

show_heatmap

Display correlation matrix as a heatmap visualization.

heatmap_colors

Color scheme for correlation heatmap.

low_color

Color for low (negative) correlation values (when using custom colors).

mid_color

Color for mid (zero) correlation values (when using custom colors).

high_color

Color for high (positive) correlation values (when using custom colors).

show_diagnostics

Generate diagnostic plots for robust correlation analysis.

plot_width

Width of plots in pixels.

plot_height

Height of plots in pixels.

decimal_places

Number of decimal places for correlation coefficients.

Value

A results object containing:

results$instructionsa html
results$package_statusa html
results$correlation_tableCorrelation coefficients and significance tests
results$bootstrap_tableBootstrap confidence intervals for correlations
results$outlier_tableIdentified outliers and their statistics
results$correlation_heatmapan image
results$outlier_plotan image
results$diagnostic_plotsan image
results$scatterplot_matrixan image

Tables can be converted to data frames with asDF or as.data.frame. For example:

results$correlation_table$asDF

as.data.frame(results$correlation_table)

Examples

# \donttest{
# Load test data
data("mtcars")

# Basic robust correlation analysis
robustcorrelation(
  data = mtcars,
  dep = c("mpg", "hp", "wt", "qsec"),
  method = "spearman"
)

# Advanced robust correlation with outlier detection
robustcorrelation(
  data = mtcars,
  dep = c("mpg", "hp", "wt", "qsec", "disp"),
  method = "percentage_bend",
  outlier_detection = TRUE,
  outlier_method = "mcd",
  bootstrap_ci = TRUE,
  n_bootstrap = 1000
)

# Multiple robust methods comparison
robustcorrelation(
  data = mtcars,
  dep = c("mpg", "hp", "wt"),
  method = "biweight",
  show_heatmap = TRUE,
  matrix_type = "lower"
)
# }