Skip to contents

Fits Semi-Markov models where transition intensities depend on time since last transition rather than absolute time. Suitable for processes where the 'clock' resets at each transition using SemiMarkov package.

Usage

semimarkov(
  data,
  time,
  event,
  subject,
  covs,
  modelType = "parametric",
  transitionStructure = "progressive",
  distributionType = "weibull",
  estimationMethod = "ml",
  timeScale = "auto",
  predictionHorizons = "1, 3, 5, 10",
  timePoints = "0.5, 1, 2, 3, 5",
  conf = 0.95,
  maxIterations = 1000,
  tolerance = 1e-06,
  bootstrapSamples = 500,
  showTransitionRates = TRUE,
  showSojournDistribution = TRUE,
  showTransitionProbs = TRUE,
  showStateProbabilities = TRUE,
  showReliabilityAnalysis = FALSE,
  showModelDiagnostics = TRUE,
  showPredictions = TRUE,
  showEducational = TRUE,
  plotSojournDistributions = TRUE,
  plotTransitionIntensities = FALSE,
  plotStateProbabilities = TRUE,
  plotReliabilityFunctions = FALSE,
  plotModelDiagnostics = FALSE
)

Arguments

data

The data as a data frame.

time

Follow-up time variable

event

Event/state variable indicating transitions between states

subject

Subject identifier for longitudinal tracking

covs

Covariates affecting transition intensities

modelType

Type of Semi-Markov model to fit

transitionStructure

Structure of allowed transitions between states

distributionType

Distribution for sojourn times in each state

estimationMethod

Method for parameter estimation

timeScale

Time scale for analysis and reporting

predictionHorizons

Comma-separated list of time horizons for predictions

timePoints

Time points for transition probability estimation

conf

Confidence level for confidence intervals

maxIterations

Maximum iterations for convergence

tolerance

Convergence tolerance for optimization

bootstrapSamples

Number of bootstrap samples for confidence intervals

showTransitionRates

Display estimated transition rates and parameters

showSojournDistribution

Display sojourn time distribution parameters

showTransitionProbs

Display transition probabilities over time

showStateProbabilities

Display state occupation probabilities

showReliabilityAnalysis

Display reliability and survival function analysis

showModelDiagnostics

Display goodness-of-fit and diagnostic tests

showPredictions

Display future state predictions

showEducational

Display educational information about Semi-Markov models

plotSojournDistributions

Display sojourn time distribution plots

plotTransitionIntensities

Display transition intensity functions over time

plotStateProbabilities

Display state occupation probability plots

plotReliabilityFunctions

Display reliability and hazard function plots

plotModelDiagnostics

Display diagnostic and goodness-of-fit plots

Value

A results object containing:

results$todoa html
results$educationalInfoa html
results$modelSummarya table
results$transitionRatesa table
results$sojournDistributiona table
results$transitionProbabilitiesa table
results$stateProbabilitiesa table
results$reliabilityAnalysisa table
results$covariateEffectsa table
results$modelDiagnosticsa table
results$predictionsTablea table
results$methodsInfoa html
results$interpretationGuidea html
results$sojournDistributionPlotan image
results$stateProbabilityPlotan image
results$transitionIntensityPlotan image
results$reliabilityPlotan image
results$diagnosticsPlotan image

Tables can be converted to data frames with asDF or as.data.frame. For example:

results$modelSummary$asDF

as.data.frame(results$modelSummary)

Examples

# \donttest{
# example will be added
# }