Implements smooth estimation of time-varying covariate effects in survival analysis using flexible spline-based methods. This approach provides continuous modeling of how covariate effects change over time, offering an alternative to step-function approaches in standard time-varying Cox models and complementing Aalen's additive hazard methodology.
Usage
smoothtimevary(
  data,
  elapsedtime,
  outcome,
  covariates,
  outcomeLevel = "1",
  time_varying_covariates,
  smoothing_method = "spline",
  spline_df = 4,
  bandwidth = 1,
  confidence_level = 0.95,
  test_constancy = TRUE,
  residual_analysis = TRUE,
  show_model_summary = TRUE,
  show_effects_table = TRUE,
  show_constancy_tests = TRUE,
  show_smooth_plots = TRUE,
  show_diagnostic_plots = TRUE,
  show_comparison_plots = TRUE,
  showSummaries = FALSE,
  showExplanations = FALSE
)Arguments
- data
- the data as a data frame 
- elapsedtime
- Survival time or follow-up duration variable 
- outcome
- Event indicator variable (0/1, FALSE/TRUE, or factor) 
- covariates
- Covariate variables for smooth time-varying effects modeling 
- outcomeLevel
- Level of outcome variable indicating event occurrence 
- time_varying_covariates
- Covariates to model with smooth time-varying effects 
- smoothing_method
- Method for smooth estimation of time-varying effects 
- spline_df
- Degrees of freedom for spline-based smoothing 
- bandwidth
- Bandwidth parameter for kernel or LOESS smoothing 
- confidence_level
- Confidence level for interval estimation 
- test_constancy
- Test whether covariate effects are constant over time 
- residual_analysis
- Perform comprehensive residual analysis and diagnostics 
- show_model_summary
- Display comprehensive model summary 
- show_effects_table
- Display table of smooth time-varying effects 
- show_constancy_tests
- Display statistical tests for effect constancy 
- show_smooth_plots
- Display plots of smooth time-varying effects 
- show_diagnostic_plots
- Display model diagnostic and residual plots 
- show_comparison_plots
- Display comparison with constant effects models 
- showSummaries
- Generate natural language summaries of the analysis results 
- showExplanations
- Show detailed explanations of the methodology and interpretation 
Value
A results object containing:
| results$todo | a html | ||||
| results$modelSummary | a html | ||||
| results$effectsTable | a table | ||||
| results$constancyTests | a table | ||||
| results$modelComparison | a table | ||||
| results$smoothingParameters | a table | ||||
| results$goodnessOfFit | a table | ||||
| results$smoothEffectPlots | an image | ||||
| results$diagnosticPlots | an image | ||||
| results$residualPlots | an image | ||||
| results$comparisonPlots | an image | ||||
| results$smoothingPlots | an image | ||||
| results$analysisSummary | a html | ||||
| results$methodExplanation | a html | 
Tables can be converted to data frames with asDF or as.data.frame. For example:
results$effectsTable$asDF
as.data.frame(results$effectsTable)