Skip to contents

Advanced spatial Bayesian survival analysis for modeling geographic patterns in survival outcomes. Incorporates spatial correlation structures, disease mapping capabilities, and hierarchical Bayesian modeling for clinical research with geographic components.

Usage

spatialbayesiansurvival(
  data,
  time,
  status,
  statusLevel,
  predictors,
  spatial_coords,
  region_id = NULL,
  adjacency_matrix = "",
  spatial_model = "car",
  spatial_prior = "icar",
  distance_method = "great_circle",
  neighborhood_threshold = 50,
  num_neighbors = 5,
  baseline_hazard = "weibull",
  piecewise_intervals = 5,
  spline_knots = 5,
  mcmc_samples = 5000,
  mcmc_burnin = 2000,
  mcmc_thin = 1,
  mcmc_chains = 3,
  covariate_priors = "normal_weak",
  covariate_prior_sd = 10,
  spatial_precision_prior = "gamma",
  spatial_precision_shape = 1,
  spatial_precision_rate = 0.5,
  model_comparison = TRUE,
  cross_validation = FALSE,
  cv_folds = 5,
  model_selection_criteria = "dic",
  spatial_prediction = TRUE,
  prediction_grid_size = 50,
  prediction_time_points = "12,24,36,60",
  confidence_level = 0.95,
  show_model_summary = TRUE,
  show_parameter_estimates = TRUE,
  show_spatial_effects = TRUE,
  show_residual_maps = TRUE,
  show_survival_maps = TRUE,
  show_hazard_maps = FALSE,
  show_convergence_diagnostics = TRUE,
  show_model_comparison = TRUE,
  show_interpretation = TRUE,
  standardize_predictors = TRUE,
  include_intercept = TRUE,
  missing_data_handling = "complete_cases",
  parallel_processing = TRUE,
  n_cores = 2,
  clinical_context = "cancer_epidemiology",
  set_seed = TRUE,
  seed_value = 42
)

Arguments

data

The data as a data frame for spatial Bayesian survival analysis.

time

.

status

.

statusLevel

.

predictors

.

spatial_coords

Longitude and Latitude coordinates (or X, Y coordinates)

region_id

Administrative region or area identifier

adjacency_matrix

Path to adjacency matrix file or leave empty for distance-based

spatial_model

.

spatial_prior

.

distance_method

.

neighborhood_threshold

Distance threshold for defining neighbors (km)

num_neighbors

Number of nearest neighbors to consider

baseline_hazard

.

piecewise_intervals

Number of intervals for piecewise constant hazard

spline_knots

Number of knots for B-spline baseline hazard

mcmc_samples

.

mcmc_burnin

.

mcmc_thin

.

mcmc_chains

.

covariate_priors

.

covariate_prior_sd

.

spatial_precision_prior

.

spatial_precision_shape

.

spatial_precision_rate

.

model_comparison

.

cross_validation

.

cv_folds

.

model_selection_criteria

.

spatial_prediction

.

prediction_grid_size

.

prediction_time_points

Comma-separated list of time points for prediction

confidence_level

.

show_model_summary

.

show_parameter_estimates

.

show_spatial_effects

.

show_residual_maps

.

show_survival_maps

.

show_hazard_maps

.

show_convergence_diagnostics

.

show_model_comparison

.

show_interpretation

.

standardize_predictors

.

include_intercept

.

missing_data_handling

.

parallel_processing

.

n_cores

.

clinical_context

.

set_seed

.

seed_value

.

Value

A results object containing:

results$modelSummarya table
results$parameterEstimatesa table
results$spatialEffectsa table
results$modelFita table
results$spatialCorrelationa table
results$modelComparisona table
results$convergenceDiagnosticsa table
results$survivalPredictionsa table
results$spatialValidationa table
results$clinicalInterpretationa html
results$methodsExplanationa html
results$spatialMapsan image
results$survivalMapsan image
results$hazardMapsan image
results$residualMapsan image
results$convergencePlotsan image
results$posteriorPlotsan image
results$spatialCorrelationPlotan image

Tables can be converted to data frames with asDF or as.data.frame. For example:

results$modelSummary$asDF

as.data.frame(results$modelSummary)

Examples

# Spatial Bayesian survival analysis
spatialbayesiansurvival(
    data = clinical_data,
    time = "survival_months",
    status = "death_indicator",
    predictors = c("age", "stage", "treatment"),
    spatial_coords = c("latitude", "longitude"),
    spatial_model = "car",
    mcmc_samples = 5000
)