Usage
surveysurvival(
  data,
  elapsedtime = NULL,
  tint = FALSE,
  dxdate = NULL,
  fudate = NULL,
  timetypedata = "ymd",
  timetypeoutput = "months",
  outcome = NULL,
  outcomeLevel,
  weights = NULL,
  strata = NULL,
  cluster = NULL,
  fpc = NULL,
  design_type = "srs",
  nest_clusters = FALSE,
  explanatory = NULL,
  contexpl = NULL,
  km_weighted = TRUE,
  cox_weighted = FALSE,
  robust_se = TRUE,
  ci_level = 0.95,
  population_totals = FALSE,
  subpopulation = NULL,
  km_plot = TRUE,
  endplot = 60,
  byplot = 12,
  ci95 = TRUE,
  risktable = FALSE,
  design_summary = TRUE,
  showSummaries = FALSE,
  showExplanations = FALSE
)Arguments
- data
- The survey dataset to be analyzed, provided as a data frame. Must contain survival variables, survey design variables (weights, strata, clusters), and any explanatory variables for analysis. 
- elapsedtime
- The numeric variable representing follow-up time until the event or last observation. Time should be in consistent units across all observations. 
- tint
- If true, survival time will be calculated from diagnosis and follow-up dates. If false, elapsedtime should be provided as a pre-calculated numeric variable. 
- dxdate
- Date of diagnosis or start of follow-up. Required if tint = true. Must match the format specified in timetypedata. 
- fudate
- Follow-up date or date of last observation. Required if tint = true. Must match the format specified in timetypedata. 
- timetypedata
- Specifies the format of date variables in the input data. Used when tint = true to parse diagnosis and follow-up dates. 
- timetypeoutput
- The units in which survival time is reported in the output. 
- outcome
- The outcome variable indicating event status (e.g., death, disease occurrence). 
- outcomeLevel
- The level of outcome considered as the event. 
- weights
- Variable containing survey sampling weights for each observation. Required for survey-weighted analysis. 
- strata
- Variable defining survey strata. Used in stratified sampling designs. 
- cluster
- Variable defining primary sampling units or clusters. Used in cluster and multi-stage sampling designs. 
- fpc
- Variable containing finite population correction factors. Optional for improved variance estimation when sampling fraction is large. 
- design_type
- Type of survey sampling design used to collect the data. 
- nest_clusters
- Whether clusters are nested within strata (TRUE) or crossed (FALSE). Relevant for stratified cluster designs. 
- explanatory
- Categorical explanatory variables for weighted Cox regression. 
- contexpl
- Continuous explanatory variables for weighted Cox regression. 
- km_weighted
- Perform survey-weighted Kaplan-Meier survival estimation. 
- cox_weighted
- Perform survey-weighted Cox proportional hazards regression. 
- robust_se
- Use robust variance estimation accounting for survey design effects. 
- ci_level
- Confidence level for confidence intervals (e.g., 0.95 for 95\ - population_totalsCalculate population-level survival estimates and totals. - subpopulationVariable defining subpopulation for domain estimation. - km_plotGenerate survey-weighted Kaplan-Meier survival plot. - endplotMaximum follow-up time to display on survival plots. - byplotTime interval for plot labels and risk tables. - ci95Display confidence intervals on survival plots. - risktableDisplay number at risk below survival plots. - design_summaryDisplay summary of survey design characteristics. - showSummariesDisplay natural language summaries alongside tables and plots for interpretation of survey-weighted survival results. - showExplanationsDisplay detailed explanations of survey-weighted survival methods and interpretation guidelines. 
A results object containing:
| results$todo | a html | ||||
| results$designSummary | a html | ||||
| results$survivalAnalysis | a html | ||||
| results$coxAnalysis | a html | ||||
| results$populationEstimates | a html | ||||
| results$kmPlot | an image | ||||
| results$designDiagnostics | a table | ||||
| results$weightedSurvivalTable | a table | ||||
| results$coxCoefficients | a table | ||||
| results$populationTotalsTable | a table | ||||
| results$subpopulationAnalysis | a table | ||||
| results$modelFitStatistics | a table | ||||
| results$designEffectsSummary | a html | ||||
| results$analysisSummary | a html | ||||
| results$methodExplanation | a html | ||||
| results$surveyDesignExplanation | a html | ||||
| results$kmWeightedExplanation | a html | ||||
| results$coxWeightedExplanation | a html | ||||
| results$populationInferenceExplanation | a html | ||||
| results$calculatedtime | an output | ||||
| results$outcomeredefined | an output | 
asDF or as.data.frame. For example:results$designDiagnostics$asDFas.data.frame(results$designDiagnostics)
Performs survival analysis with complex survey designs and sampling
weights. This module implements survey-weighted survival methods for
population-based inference from complex sampling designs including
stratified, clustered, and multi-stage sampling. The analysis accounts for
survey design effects on standard errors and confidence intervals, enabling
proper population-level survival estimates from survey data.
# Example 1: Basic survey-weighted Kaplan-Meier
library(survival)
library(survey)surveysurvival(
    data = mysurveydata,
    elapsedtime = "time",
    outcome = "status",
    outcomeLevel = "1",
    weights = "survey_weight",
    strata = "stratum",
    cluster = "psu",
    timetypeoutput = "months"
)# Example 2: Weighted Cox regression with complex design
surveysurvival(
    data = mysurveydata,
    elapsedtime = "time",
    outcome = "status",
    outcomeLevel = "1",
    explanatory = c("age_group", "sex"),
    contexpl = c("income"),
    weights = "survey_weight",
    strata = "stratum",
    cluster = "psu",
    fpc = "fpc_var",
    design_type = "stratified_cluster"
)# Example 3: Multi-stage survey design
surveysurvival(
    data = nhanes_data,
    elapsedtime = "followup_years",
    outcome = "death",
    outcomeLevel = "Dead",
    explanatory = c("education", "race"),
    weights = "wtmec2yr",
    strata = "sdmvstra",
    cluster = "sdmvpsu",
    design_type = "multistage",
    nest_clusters = TRUE
)