Comprehensive validation toolkit for survival models including calibration assessment, prediction performance metrics, bootstrap validation, and external validation frameworks. Essential for developing reliable prognostic models.
Usage
survivalmodelvalidation(
data,
time_var,
status_var,
risk_score,
covariates,
stratification_var,
validation_type = "internal_bootstrap",
model_type = "cox_ph",
performance_metrics = "all_metrics",
calibration_assessment = TRUE,
calibration_method = "decile_based",
bootstrap_samples = 1000,
cv_folds = 10,
prediction_times = "1,3,5,10",
confidence_level = 0.95,
optimism_correction = TRUE,
shrinkage_estimation = TRUE,
discrimination_plots = TRUE,
calibration_plots = TRUE,
roc_curves = TRUE,
prediction_error_plots = TRUE,
risk_distribution_plots = TRUE,
model_comparison = FALSE,
decision_curve_analysis = TRUE,
net_benefit_range = "0.01,0.99",
external_data_source = "",
transportability_analysis = FALSE,
subgroup_validation = TRUE,
temporal_trends = FALSE,
missing_data_sensitivity = FALSE,
clinical_impact_metrics = TRUE,
reporting_guidelines = "tripod",
export_validation_report = FALSE
)Arguments
- data
The data as a data frame.
- time_var
Time to event or censoring
- status_var
Event indicator variable
- risk_score
Model predictions to validate
- covariates
Covariates for model fitting/validation
- stratification_var
Stratification factor
- validation_type
Validation methodology
- model_type
Model class specification
- performance_metrics
Metrics for model assessment
- calibration_assessment
Enable calibration evaluation
- calibration_method
Calibration evaluation approach
- bootstrap_samples
Bootstrap iteration count
- cv_folds
CV fold specification
- prediction_times
Times for time-dependent metrics
- confidence_level
CI level
- optimism_correction
Correct for overfitting bias
- shrinkage_estimation
Calculate shrinkage coefficient
- discrimination_plots
Generate discrimination visualizations
- calibration_plots
Generate calibration visualizations
- roc_curves
Generate ROC visualizations
- prediction_error_plots
Generate error curve plots
- risk_distribution_plots
Generate risk distribution plots
- model_comparison
Enable model comparison analysis
- decision_curve_analysis
Evaluate clinical decision-making utility
- net_benefit_range
Threshold range for net benefit
- external_data_source
External validation data source
- transportability_analysis
Evaluate population transportability
- subgroup_validation
Enable subgroup-specific validation
- temporal_trends
Assess time-based performance changes
- missing_data_sensitivity
Evaluate missing data impact
- clinical_impact_metrics
Assess clinical decision impact
- reporting_guidelines
Structured reporting format
- export_validation_report
Generate exportable report
Value
A results object containing:
results$instructions | Analysis instructions and overview | ||||
results$modelSummary | Summary of the survival model being validated | ||||
results$performanceMetrics | Comprehensive model performance metrics | ||||
results$calibrationMetrics | Model calibration metrics and tests | ||||
results$validationResults | Detailed validation results by method | ||||
results$discriminationAnalysis | Model discrimination assessment | ||||
results$calibrationAnalysis | Detailed calibration assessment | ||||
results$subgroupAnalysis | Performance across subgroups | ||||
results$decisionCurveResults | Clinical decision-making utility assessment | ||||
results$clinicalImpact | Clinical relevance and impact metrics | ||||
results$discriminationPlot | Discrimination visualization | ||||
results$calibrationPlot | Calibration assessment visualization | ||||
results$rocCurvePlot | Time-dependent ROC curve visualization | ||||
results$predictionErrorPlot | Prediction error assessment | ||||
results$riskDistributionPlot | Risk score distribution by outcome | ||||
results$decisionCurvePlot | Decision curve visualization | ||||
results$validationReport | Structured validation report | ||||
results$methodologicalNotes | Detailed methodology and interpretation guidance | ||||
results$recommendations | Clinical and methodological recommendations | ||||
results$diagnostics | Diagnostic information and warnings |
Tables can be converted to data frames with asDF or as.data.frame. For example:
results$performanceMetrics$asDF
as.data.frame(results$performanceMetrics)