Skip to contents

Comprehensive validation toolkit for survival models including calibration assessment, prediction performance metrics, bootstrap validation, and external validation frameworks. Essential for developing reliable prognostic models.

Usage

survivalmodelvalidation(
  data,
  time_var,
  status_var,
  risk_score,
  covariates,
  stratification_var,
  validation_type = "internal_bootstrap",
  model_type = "cox_ph",
  performance_metrics = "all_metrics",
  calibration_assessment = TRUE,
  calibration_method = "decile_based",
  bootstrap_samples = 1000,
  cv_folds = 10,
  prediction_times = "1,3,5,10",
  confidence_level = 0.95,
  optimism_correction = TRUE,
  shrinkage_estimation = TRUE,
  discrimination_plots = TRUE,
  calibration_plots = TRUE,
  roc_curves = TRUE,
  prediction_error_plots = TRUE,
  risk_distribution_plots = TRUE,
  model_comparison = FALSE,
  decision_curve_analysis = TRUE,
  net_benefit_range = "0.01,0.99",
  external_data_source = "",
  transportability_analysis = FALSE,
  subgroup_validation = TRUE,
  temporal_trends = FALSE,
  missing_data_sensitivity = FALSE,
  clinical_impact_metrics = TRUE,
  reporting_guidelines = "tripod",
  export_validation_report = FALSE
)

Arguments

data

The data as a data frame.

time_var

Time to event or censoring

status_var

Event indicator variable

risk_score

Model predictions to validate

covariates

Covariates for model fitting/validation

stratification_var

Stratification factor

validation_type

Validation methodology

model_type

Model class specification

performance_metrics

Metrics for model assessment

calibration_assessment

Enable calibration evaluation

calibration_method

Calibration evaluation approach

bootstrap_samples

Bootstrap iteration count

cv_folds

CV fold specification

prediction_times

Times for time-dependent metrics

confidence_level

CI level

optimism_correction

Correct for overfitting bias

shrinkage_estimation

Calculate shrinkage coefficient

discrimination_plots

Generate discrimination visualizations

calibration_plots

Generate calibration visualizations

roc_curves

Generate ROC visualizations

prediction_error_plots

Generate error curve plots

risk_distribution_plots

Generate risk distribution plots

model_comparison

Enable model comparison analysis

decision_curve_analysis

Evaluate clinical decision-making utility

net_benefit_range

Threshold range for net benefit

external_data_source

External validation data source

transportability_analysis

Evaluate population transportability

subgroup_validation

Enable subgroup-specific validation

Assess time-based performance changes

missing_data_sensitivity

Evaluate missing data impact

clinical_impact_metrics

Assess clinical decision impact

reporting_guidelines

Structured reporting format

export_validation_report

Generate exportable report

Value

A results object containing:

results$instructionsAnalysis instructions and overview
results$modelSummarySummary of the survival model being validated
results$performanceMetricsComprehensive model performance metrics
results$calibrationMetricsModel calibration metrics and tests
results$validationResultsDetailed validation results by method
results$discriminationAnalysisModel discrimination assessment
results$calibrationAnalysisDetailed calibration assessment
results$subgroupAnalysisPerformance across subgroups
results$decisionCurveResultsClinical decision-making utility assessment
results$clinicalImpactClinical relevance and impact metrics
results$discriminationPlotDiscrimination visualization
results$calibrationPlotCalibration assessment visualization
results$rocCurvePlotTime-dependent ROC curve visualization
results$predictionErrorPlotPrediction error assessment
results$riskDistributionPlotRisk score distribution by outcome
results$decisionCurvePlotDecision curve visualization
results$validationReportStructured validation report
results$methodologicalNotesDetailed methodology and interpretation guidance
results$recommendationsClinical and methodological recommendations
results$diagnosticsDiagnostic information and warnings

Tables can be converted to data frames with asDF or as.data.frame. For example:

results$performanceMetrics$asDF

as.data.frame(results$performanceMetrics)

Examples

# \donttest{
# Example: Cox model validation
survivalmodelvalidation(
    data = clinical_data,
    time = followup_months,
    status = death_event,
    risk_score = predicted_risk,
    validation_type = "internal_bootstrap"
)
# }