Skip to contents

Comprehensive validation and performance assessment for survival models. Includes prediction error curves, time-dependent ROC analysis, calibration plots, and decision curve analysis for clinical decision making.

Usage

survivalvalidation(
  data,
  time,
  status,
  predicted_risk,
  model_formula = "",
  external_data,
  validation_method = "cv",
  cv_folds = 10,
  bootstrap_samples = 500,
  concordance_index = TRUE,
  time_dependent_auc = TRUE,
  prediction_error = TRUE,
  integrated_brier = TRUE,
  calibration_plot = TRUE,
  decision_curve = TRUE,
  time_points = "1,2,3,5",
  max_time = 0,
  plot_roc_curves = TRUE,
  plot_calibration = TRUE,
  plot_decision_curve = TRUE,
  plot_prediction_error = TRUE,
  confidence_level = 0.95,
  smoothing = TRUE,
  risk_groups = 4,
  competing_risks = FALSE,
  cause_specific,
  model_comparison = FALSE,
  model_names = "",
  net_benefit_thresholds = "0.01,0.05,0.1,0.2,0.3"
)

Arguments

data

The data as a data frame.

time

Time to event or censoring

status

Event indicator variable

predicted_risk

Model predictions to validate

model_formula

Variables for Cox model if predictions not provided

external_data

Optional external dataset for validation

validation_method

Validation approach

cv_folds

CV fold specification

bootstrap_samples

Bootstrap iterations

concordance_index

Compute C-index

time_dependent_auc

Compute time-dependent AUC

prediction_error

Compute prediction error curves

integrated_brier

Compute IBS

calibration_plot

Create calibration assessment

decision_curve

DCA for clinical decision making

time_points

Specific times for assessment

max_time

Upper time limit

plot_roc_curves

Generate ROC plots

plot_calibration

Generate calibration plots

plot_decision_curve

Generate DCA plots

plot_prediction_error

Generate PEC plots

confidence_level

CI level

smoothing

Smooth curve estimation

risk_groups

Risk group stratification

competing_risks

Competing risks consideration

cause_specific

Cause-specific event variable

model_comparison

Multi-model comparison

model_names

Model labels for comparison

net_benefit_thresholds

DCA threshold range

Value

A results object containing:

results$todoa html
results$summarya html
results$performanceTablea table
results$concordanceTablea table
results$aucTablea table
results$brierTablea table
results$calibrationTablea table
results$decisionTablea table
results$rocPlotan image
results$calibrationPlotan image
results$decisionPlotan image
results$predErrorPlotan image
results$calibrationMetricsa table
results$validationSummarya html
results$modelComparisona table
results$externalValidationa html
results$competingRisksMetricsa table
results$interpretationa html

Tables can be converted to data frames with asDF or as.data.frame. For example:

results$performanceTable$asDF

as.data.frame(results$performanceTable)

Examples

# \donttest{
# Example: Validate Cox regression model
survivalvalidation(
    data = cancer_data,
    time = followup_time,
    status = death_status,
    predicted_risk = risk_score,
    validation_method = "cv",
    time_points = c(1, 3, 5)
)
# }