Skip to contents

Analysis of time-dependent covariates and time-varying ROC curves for survival data. Handles covariates that change over time, landmark analysis, and dynamic prediction accuracy assessment through time-dependent AUC and optimal cutpoint selection.

Usage

timedependent(
  data,
  id,
  start_time,
  stop_time,
  event,
  time_dependent_vars,
  baseline_vars,
  perform_landmark = TRUE,
  landmark_times = "6,12,24",
  prediction_window = 12,
  time_dependent_roc = TRUE,
  roc_times = "1,2,3,5",
  roc_method = "incident_dynamic",
  optimal_cutpoint = TRUE,
  cutpoint_method = "youden",
  model_type = "extended_cox",
  time_transform = "none",
  test_proportional_hazards = TRUE,
  schoenfeld_transform = "km",
  internal_validation = TRUE,
  cv_folds = 5,
  bootstrap_validation = FALSE,
  n_bootstrap = 100,
  compare_models = FALSE,
  comparison_metric = "iauc",
  plot_time_varying_effects = TRUE,
  plot_roc_curves = TRUE,
  plot_auc_trajectory = TRUE,
  plot_cutpoint_stability = TRUE,
  plot_landmark_predictions = TRUE,
  plot_schoenfeld_residuals = TRUE,
  confidence_level = 0.95,
  decimals = 3,
  export_predictions = FALSE,
  export_roc_data = FALSE
)

Arguments

data

The data as a data frame (can be in counting process format).

id

Patient ID variable

start_time

Beginning of time interval (tstart)

stop_time

End of time interval (tstop)

event

Event status variable

time_dependent_vars

Time-varying predictors

baseline_vars

Time-fixed predictors

perform_landmark

Enable landmark analysis

landmark_times

Landmark time points

prediction_window

Prediction horizon from landmark

time_dependent_roc

Enable TD-ROC analysis

roc_times

ROC assessment times

roc_method

TD-ROC approach

optimal_cutpoint

Optimal threshold selection

cutpoint_method

Cutpoint optimization approach

model_type

Model specification

time_transform

Time function transformation

test_proportional_hazards

PH assumption testing

schoenfeld_transform

Residual test transformation

internal_validation

Cross-validation assessment

cv_folds

CV fold specification

bootstrap_validation

Bootstrap assessment

n_bootstrap

Bootstrap iterations

compare_models

Model comparison

comparison_metric

Comparison measure

plot_time_varying_effects

Time-varying coefficient plots

plot_roc_curves

TD-ROC visualization

plot_auc_trajectory

AUC evolution plot

plot_cutpoint_stability

Cutpoint trajectory plot

plot_landmark_predictions

Landmark prediction plots

plot_schoenfeld_residuals

Residual diagnostic plots

confidence_level

CI level

decimals

Output precision

export_predictions

Save predictions

export_roc_data

Save ROC results

Value

A results object containing:

results$todoa html
results$model_summarya html
results$cox_resultsa table
results$time_varying_effectsa table
results$landmark_resultsa table
results$roc_resultsa table
results$model_comparisona table
results$validation_resultsa table
results$time_varying_plotan image
results$roc_curves_plotan image
results$auc_trajectory_plotan image
results$cutpoint_stability_plotan image
results$landmark_predictions_plotan image
results$schoenfeld_plotan image
results$interpretationa html
results$recommendationsa html

Tables can be converted to data frames with asDF or as.data.frame. For example:

results$cox_results$asDF

as.data.frame(results$cox_results)

Examples

# \donttest{
# Example: Time-varying biomarker effects
timedependent(
    data = biomarker_data,
    id = patient_id,
    start_time = tstart,
    stop_time = tstop,
    event = status,
    time_dependent_vars = c("biomarker_level", "treatment_status"),
    baseline_vars = c("age", "sex"),
    landmark_times = c(6, 12, 24),
    roc_times = c(1, 2, 3, 5)
)
# }