Performs Cox proportional hazards regression with time-varying covariates. This analysis allows covariates to change values over time during follow-up, which is essential for modeling dynamic clinical variables such as treatment changes, biomarker levels, or disease progression markers.
Usage
timevarycox(
  data,
  elapsedtime,
  timevar_data,
  outcome,
  fixed_covariates,
  subject_id,
  outcomeLevel = "1",
  robust_se = TRUE,
  cluster_se = TRUE,
  show_model_summary = TRUE,
  show_coefficients = TRUE,
  show_hazard_ratios = TRUE,
  showSummaries = FALSE,
  showExplanations = FALSE
)Arguments
- data
- The data as a data frame. 
- elapsedtime
- Time variable for survival analysis 
- timevar_data
- Variables that change over time 
- outcome
- Event indicator variable 
- fixed_covariates
- Time-constant covariates 
- subject_id
- Unique identifier for each subject 
- outcomeLevel
- Level of outcome variable indicating event 
- robust_se
- Use robust standard errors 
- cluster_se
- Cluster standard errors by subject 
- show_model_summary
- Display model summary information 
- show_coefficients
- Display regression coefficients table 
- show_hazard_ratios
- Display hazard ratios 
- showSummaries
- Generate natural language summaries 
- showExplanations
- Show methodology explanations 
Value
A results object containing:
| results$todo | a html | ||||
| results$modelSummary | a html | ||||
| results$coefficientsTable | a table | ||||
| results$analysisSummary | a html | ||||
| results$methodExplanation | a html | 
Tables can be converted to data frames with asDF or as.data.frame. For example:
results$coefficientsTable$asDF
as.data.frame(results$coefficientsTable)