Skip to contents

Simulated laboratory test results with multiple visit timepoints, test panels, and clinical categories. Designed to test descriptive statistics tables, visit-based grouping, and laboratory data presentation formats.

Usage

tinytable_laboratory_results

Format

A data frame with 180 observations and 15 variables:

subject_id

Character. Unique subject identifier (LAB_0001 to LAB_0180)

visit

Factor. Study visit ("Baseline", "Week 4", "Week 8", "Week 12")

visit_date

Date. Date of laboratory assessment

lab_category

Factor. Clinical interpretation ("Normal", "Borderline", "Abnormal")

urgency

Factor. Test urgency ("Routine", "STAT", "Priority")

wbc

Numeric. White blood cell count (2.0-15.0 × 10³/μL)

rbc

Numeric. Red blood cell count (3.5-6.0 × 10⁶/μL)

hematocrit

Numeric. Hematocrit percentage (30-55%)

platelets

Integer. Platelet count (100-500 × 10³/μL)

sodium

Integer. Serum sodium (130-150 mEq/L)

potassium

Numeric. Serum potassium (3.0-5.5 mEq/L)

creatinine

Numeric. Serum creatinine (0.5-3.0 mg/dL)

bun

Integer. Blood urea nitrogen (7-50 mg/dL)

alt

Integer. Alanine aminotransferase (5-100 U/L) with ~2% missing values

ast

Integer. Aspartate aminotransferase (5-120 U/L)

Source

Simulated data generated using create_tinytable_test_data.R

Details

This dataset represents laboratory test results from a longitudinal clinical study with multiple visit timepoints. Laboratory values are within realistic clinical ranges with appropriate inter-test correlations and visit-to-visit variability.

Key Features:

  • Complete blood count (CBC) panel

  • Basic metabolic panel (chemistry)

  • Liver function tests

  • Multiple visit timepoints for longitudinal analysis

  • Clinical categorization of results

  • Date variables for temporal analysis

Recommended TinyTable Usage:

  • Table Type: "Descriptive Statistics" for laboratory value summaries

  • Grouping Variable: visit or lab_category

  • Variables: wbc, rbc, sodium, potassium, alt, ast

  • Themes: "Clinical" for medical context

Examples

if (FALSE) { # \dontrun{
# Load the dataset
data(tinytable_laboratory_results)

# Laboratory values descriptive statistics
result <- tinytable(
  data = tinytable_laboratory_results,
  vars = c("wbc", "rbc", "sodium", "potassium"),
  table_type = "descriptive",
  table_theme = "clinical",
  precision_digits = 2
)

# Laboratory results by visit
result_visit <- tinytable(
  data = tinytable_laboratory_results,
  vars = c("wbc", "hemoglobin", "platelets"),
  group_var = "visit",
  table_type = "grouped"
)
} # }