Multi-Modal Data Summary Test Dataset
Source:R/data_tinytable_docs.R
tinytable_multimodal_summary.Rd
Mixed data types dataset with continuous, ordinal, categorical, and date variables. Designed to test comprehensive table formatting with diverse variable types, complex missing patterns, and mixed-scale measurements.
Format
A data frame with 200 observations and 13 variables:
- record_id
Integer. Record identifier (1-200)
- data_source
Factor. Data origin ("EHR", "Registry", "Clinical_Trial", "Survey")
- region
Factor. Geographic region ("North", "South", "East", "West", "Central")
- score_1
Numeric. Scale score 0-100 with 1 decimal place
- score_2
Numeric. Rating scale 1-5 with 2 decimal places and ~8% missing
- measurement_a
Numeric. Measurement in arbitrary units (50-300) with ~4% missing
- severity
Ordered Factor. Severity level ("Mild" < "Moderate" < "Severe")
- priority
Ordered Factor. Priority level ("Low" < "Medium" < "High" < "Critical")
- flag_positive
Factor. Binary flag ("Yes", "No")
- quality_check
Factor. Quality assessment ("Pass", "Fail")
- category_type
Factor. Category classification ("Type_A" to "Type_H")
- start_date
Date. Study start date
- end_date
Date. Study end date
Details
This dataset is specifically designed to test tinytable's ability to handle mixed data types in a single table. It includes variables with different scales, ordinal factors, dates, and complex missing patterns.
Key Features:
Multiple continuous scales (0-100, 1-5, 50-300)
Ordinal factors with proper level ordering
Binary and multi-category factors
Date variables for temporal data
Complex missing data patterns
Multiple data sources for subgroup analysis
Recommended TinyTable Usage:
Table Type: "Data Summary" or "Custom Format"
Grouping Variable: data_source or region
Variables: score_1, score_2, severity, priority
Themes: "Modern" for contemporary aesthetics
Examples
if (FALSE) { # \dontrun{
# Load the dataset
data(tinytable_multimodal_summary)
# Mixed data types summary
result <- tinytable(
data = tinytable_multimodal_summary,
vars = c("score_1", "score_2", "severity", "priority"),
table_type = "summary",
show_missing = TRUE
)
# Data source comparison
result_source <- tinytable(
data = tinytable_multimodal_summary,
vars = c("score_1", "measurement_a"),
group_var = "data_source",
table_type = "descriptive"
)
} # }