Minimal dataset with very small sample size to test edge cases with minimal data, small group sizes, and basic table formatting functionality.
Format
A data frame with 15 observations and 6 variables:
- id
Integer. Simple identifier (1-15)
- group
Factor. Binary grouping variable ("A", "B")
- value_1
Numeric. Primary numeric variable with 1 missing value
- value_2
Numeric. Secondary numeric variable (0-100 range)
- category
Factor. Three-level factor ("X", "Y", "Z")
- flag
Factor. Binary flag ("Yes", "No")
Details
This minimal dataset tests table formatting with very small sample sizes, which can reveal edge cases in statistical calculations, grouping operations, and table layout algorithms.
Key Features:
Only 15 observations total
Simple variable structure
Single missing value for testing
Small group sizes when stratified
Basic data types only
Common Use Cases:
Testing minimum sample size handling
Validating small group statistics
Edge case detection in grouping algorithms
Minimum viable table formatting
Recommended TinyTable Usage:
Table Type: "Summary" or "Raw Data Display"
Variables: value_1, value_2, category
Grouping: group (results in very small subgroups)
Themes: Any theme for basic formatting testing
Examples
if (FALSE) { # \dontrun{
# Load the dataset
data(tinytable_small_sample)
# Basic small sample table
result <- tinytable(
data = tinytable_small_sample,
vars = c("value_1", "value_2", "category"),
table_type = "summary"
)
# Small group analysis
result_grouped <- tinytable(
data = tinytable_small_sample,
vars = c("value_1", "value_2"),
group_var = "group",
table_type = "descriptive"
)
} # }