Skip to contents

Implements transformation models providing a unified framework for various survival analysis approaches through transformation functions. Includes linear transformation models, Box-Cox transformations, and non-parametric transformations, enabling flexible modeling of survival data with automatic transformation selection and validation.

Usage

transformationmodels(
  data,
  elapsedtime,
  outcome,
  covariates,
  outcomeLevel = "1",
  transformation = "boxcox",
  distribution = "normal",
  method = "ml",
  support = "automatic",
  lambda_search = TRUE,
  lambda_range_min = -2,
  lambda_range_max = 2,
  stratify_variable,
  weights_variable,
  confidence_level = 0.95,
  max_iterations = 100,
  convergence_tolerance = 1e-06,
  transformation_validation = TRUE,
  model_selection = FALSE,
  bootstrap_ci = FALSE,
  bootstrap_samples = 500,
  show_model_summary = TRUE,
  show_coefficients = TRUE,
  show_transformation = TRUE,
  show_diagnostics = TRUE,
  show_comparison = TRUE,
  show_transformation_plots = TRUE,
  show_residual_plots = TRUE,
  show_survival_plots = TRUE,
  show_qq_plots = TRUE,
  showSummaries = FALSE,
  showExplanations = FALSE
)

Arguments

data

the data as a data frame

elapsedtime

Survival time or follow-up duration variable

outcome

Event indicator variable (0/1, FALSE/TRUE, or factor)

covariates

Predictor variables for the transformation model

outcomeLevel

Level of outcome variable indicating event occurrence

transformation

Type of transformation function to apply

distribution

Error distribution assumption

method

Parameter estimation method

support

Specification of transformation support

Automatic search for optimal Box-Cox lambda parameter

lambda_range_min

Minimum value for lambda parameter search

lambda_range_max

Maximum value for lambda parameter search

stratify_variable

Variable for stratified analysis

weights_variable

Observation weights variable

confidence_level

Confidence level for intervals

max_iterations

Maximum number of iterations

convergence_tolerance

Convergence tolerance for estimation

transformation_validation

Validate transformation assumptions

model_selection

Automatic selection of best transformation

bootstrap_ci

Compute bootstrap confidence intervals

bootstrap_samples

Number of bootstrap samples

show_model_summary

Display comprehensive model summary

show_coefficients

Display coefficient estimates table

show_transformation

Display transformation function analysis

show_diagnostics

Display model diagnostics

show_comparison

Compare different transformation models

show_transformation_plots

Display transformation function plots

show_residual_plots

Display residual diagnostic plots

show_survival_plots

Display survival curves

show_qq_plots

Display quantile-quantile plots

showSummaries

Generate natural language summaries

showExplanations

Show detailed methodology explanations

Value

A results object containing:

results$modelSummarya table
results$coefficientsa table
results$transformationAnalysisa table
results$diagnosticsa table
results$modelComparisona table
results$transformationInfoa table
results$lambdaSearcha table
results$validationResultsa table
results$transformationPlotsan image
results$residualPlotsan image
results$survivalPlotsan image
results$qqPlotsan image
results$summaryTablea html
results$methodExplanationa html

Tables can be converted to data frames with asDF or as.data.frame. For example:

results$modelSummary$asDF

as.data.frame(results$modelSummary)

Examples

# Example: Transformation model with Box-Cox transformation
library(survival)
library(tram)

transformationmodels(
    data = survival_data,
    elapsedtime = "time",
    outcome = "status",
    outcomeLevel = "1",
    covariates = c("age", "treatment", "biomarker"),
    transformation = "boxcox",
    distribution = "normal",
    method = "ml"
)