Advanced decision tree analysis with enhanced CART algorithm, comprehensive validation methods, hyperparameter tuning, and detailed clinical performance assessment for medical research and clinical decision support.
Usage
treeadvanced(
  data,
  vars = NULL,
  facs = NULL,
  target,
  targetLevel,
  train = NULL,
  trainLevel,
  validation = "repeated_cv",
  cv_folds = 5,
  cv_repeats = 3,
  bootstrap_samples = 200,
  stratified_sampling = TRUE,
  test_split = 0.25,
  hyperparameter_tuning = FALSE,
  tuning_method = "grid",
  tuning_metric = "bacc",
  max_depth_range = "3:8",
  cp_range = "0.001:0.1",
  min_samples_range = "10:50",
  pruning_method = "one_se",
  custom_cp = 0.01,
  auto_prune = TRUE,
  show_cp_analysis = FALSE,
  splitting_criterion = "gini",
  surrogate_splits = TRUE,
  max_surrogate = 5,
  competing_splits = 4,
  cost_sensitive = FALSE,
  clinical_loss_preset = "equal",
  fn_fp_cost_ratio = 2,
  prevalence_adjustment = FALSE,
  population_prevalence = 10,
  feature_selection = FALSE,
  feature_selection_method = "rfe",
  max_features = 10,
  show_tree_plot = TRUE,
  show_performance_metrics = TRUE,
  show_confusion_matrix = TRUE,
  show_importance_plot = TRUE,
  show_validation_curves = FALSE,
  show_calibration_plot = FALSE,
  show_roc_curve = TRUE,
  bootstrap_confidence = FALSE,
  n_bootstrap = 500,
  clinical_context = "diagnosis",
  show_clinical_interpretation = TRUE,
  clinical_importance_interpretation = TRUE,
  mdg_threshold = 1,
  show_feature_contributions = FALSE,
  survival_integration = FALSE,
  set_seed = TRUE,
  seed_value = 42
)Arguments
- data
- The data as a data frame for advanced tree analysis. 
- vars
- . 
- facs
- . 
- target
- . 
- targetLevel
- . 
- train
- . 
- trainLevel
- . 
- validation
- . 
- cv_folds
- . 
- cv_repeats
- . 
- bootstrap_samples
- . 
- stratified_sampling
- . 
- test_split
- . 
- hyperparameter_tuning
- . 
- tuning_method
- . 
- tuning_metric
- . 
- max_depth_range
- . 
- cp_range
- . 
- min_samples_range
- . 
- pruning_method
- . 
- custom_cp
- . 
- auto_prune
- . 
- show_cp_analysis
- . 
- splitting_criterion
- . 
- surrogate_splits
- . 
- max_surrogate
- . 
- competing_splits
- . 
- cost_sensitive
- . 
- clinical_loss_preset
- . 
- fn_fp_cost_ratio
- . 
- prevalence_adjustment
- . 
- population_prevalence
- . 
- feature_selection
- . 
- feature_selection_method
- . 
- max_features
- . 
- show_tree_plot
- . 
- show_performance_metrics
- . 
- show_confusion_matrix
- . 
- show_importance_plot
- . 
- show_validation_curves
- . 
- show_calibration_plot
- . 
- show_roc_curve
- . 
- bootstrap_confidence
- . 
- n_bootstrap
- . 
- clinical_context
- . 
- show_clinical_interpretation
- . 
- clinical_importance_interpretation
- . 
- mdg_threshold
- . 
- show_feature_contributions
- . 
- survival_integration
- . 
- set_seed
- . 
- seed_value
- . 
Value
A results object containing:
| results$instructions | a html | ||||
| results$modelsummary | a html | ||||
| results$tuningresults | a html | ||||
| results$performancetable | a table | ||||
| results$confusionmatrix | a table | ||||
| results$variableimportance | a table | ||||
| results$treeplot | an image | ||||
| results$importanceplot | an image | ||||
| results$validationcurves | an image | ||||
| results$calibrationplot | an image | ||||
| results$roccurve | an image | ||||
| results$clinicalinterpretation | a html | ||||
| results$clinicalimportance | a table | ||||
| results$featurecontributions | a table | ||||
| results$survivalintegration | a html | 
Tables can be converted to data frames with asDF or as.data.frame. For example:
results$performancetable$asDF
as.data.frame(results$performancetable)
Examples
# Advanced analysis with hyperparameter tuning
tree_advanced(
    data = clinical_data,
    vars = c("biomarker1", "biomarker2", "age"),
    facs = c("grade", "stage"),
    target = "outcome",
    targetLevel = "positive",
    validation = "repeated_cv",
    hyperparameter_tuning = TRUE,
    show_cp_analysis = TRUE,
    cost_sensitive = TRUE
)