Skip to contents

Advanced decision tree analysis with enhanced CART algorithm, comprehensive validation methods, hyperparameter tuning, and detailed clinical performance assessment for medical research and clinical decision support.

Usage

treeadvanced(
  data,
  vars = NULL,
  facs = NULL,
  target,
  targetLevel,
  train = NULL,
  trainLevel,
  validation = "repeated_cv",
  cv_folds = 5,
  cv_repeats = 3,
  bootstrap_samples = 200,
  stratified_sampling = TRUE,
  test_split = 0.25,
  hyperparameter_tuning = FALSE,
  tuning_method = "grid",
  tuning_metric = "bacc",
  max_depth_range = "3:8",
  cp_range = "0.001:0.1",
  min_samples_range = "10:50",
  pruning_method = "one_se",
  custom_cp = 0.01,
  auto_prune = TRUE,
  show_cp_analysis = FALSE,
  splitting_criterion = "gini",
  surrogate_splits = TRUE,
  max_surrogate = 5,
  competing_splits = 4,
  cost_sensitive = FALSE,
  clinical_loss_preset = "equal",
  fn_fp_cost_ratio = 2,
  prevalence_adjustment = FALSE,
  population_prevalence = 10,
  feature_selection = FALSE,
  feature_selection_method = "rfe",
  max_features = 10,
  show_tree_plot = TRUE,
  show_performance_metrics = TRUE,
  show_confusion_matrix = TRUE,
  show_importance_plot = TRUE,
  show_validation_curves = FALSE,
  show_calibration_plot = FALSE,
  show_roc_curve = TRUE,
  bootstrap_confidence = FALSE,
  n_bootstrap = 500,
  clinical_context = "diagnosis",
  show_clinical_interpretation = TRUE,
  clinical_importance_interpretation = TRUE,
  mdg_threshold = 1,
  show_feature_contributions = FALSE,
  survival_integration = FALSE,
  set_seed = TRUE,
  seed_value = 42
)

Arguments

data

The data as a data frame for advanced tree analysis.

vars

.

facs

.

target

.

targetLevel

.

train

.

trainLevel

.

validation

.

cv_folds

.

cv_repeats

.

bootstrap_samples

.

stratified_sampling

.

test_split

.

hyperparameter_tuning

.

tuning_method

.

tuning_metric

.

max_depth_range

.

cp_range

.

min_samples_range

.

pruning_method

.

custom_cp

.

auto_prune

.

show_cp_analysis

.

splitting_criterion

.

surrogate_splits

.

max_surrogate

.

competing_splits

.

cost_sensitive

.

clinical_loss_preset

.

fn_fp_cost_ratio

.

prevalence_adjustment

.

population_prevalence

.

feature_selection

.

feature_selection_method

.

max_features

.

show_tree_plot

.

show_performance_metrics

.

show_confusion_matrix

.

show_importance_plot

.

show_validation_curves

.

show_calibration_plot

.

show_roc_curve

.

bootstrap_confidence

.

n_bootstrap

.

clinical_context

.

show_clinical_interpretation

.

clinical_importance_interpretation

.

mdg_threshold

.

show_feature_contributions

.

survival_integration

.

set_seed

.

seed_value

.

Value

A results object containing:

results$instructionsa html
results$modelsummarya html
results$tuningresultsa html
results$performancetablea table
results$confusionmatrixa table
results$variableimportancea table
results$treeplotan image
results$importanceplotan image
results$validationcurvesan image
results$calibrationplotan image
results$roccurvean image
results$clinicalinterpretationa html
results$clinicalimportancea table
results$featurecontributionsa table
results$survivalintegrationa html

Tables can be converted to data frames with asDF or as.data.frame. For example:

results$performancetable$asDF

as.data.frame(results$performancetable)

Examples

# Advanced analysis with hyperparameter tuning
tree_advanced(
    data = clinical_data,
    vars = c("biomarker1", "biomarker2", "age"),
    facs = c("grade", "stage"),
    target = "outcome",
    targetLevel = "positive",
    validation = "repeated_cv",
    hyperparameter_tuning = TRUE,
    show_cp_analysis = TRUE,
    cost_sensitive = TRUE
)