Comprehensive comparison of decision tree algorithms for clinical research. Compares CART, Random Forest, and Gradient Boosting with cross-validation, statistical testing, and clinical performance assessment.
Usage
treecompare(
  data,
  vars = NULL,
  facs = NULL,
  target,
  targetLevel,
  include_cart = TRUE,
  include_rf = TRUE,
  include_gbm = FALSE,
  include_xgboost = FALSE,
  include_ctree = FALSE,
  validation = "repeated_cv",
  cv_folds = 5,
  cv_repeats = 5,
  bootstrap_samples = 200,
  test_split = 0.25,
  stratified_sampling = TRUE,
  primary_metric = "bacc",
  statistical_testing = TRUE,
  correction_method = "holm",
  tune_parameters = TRUE,
  tuning_method = "grid",
  cart_max_depth = 5,
  cart_min_split = 20,
  rf_ntrees = 500,
  rf_mtry_method = "auto",
  clinical_context = "diagnosis",
  interpretability_weight = 0.3,
  show_comparison_table = TRUE,
  show_performance_plot = TRUE,
  show_roc_comparison = TRUE,
  show_statistical_tests = TRUE,
  show_ranking_table = TRUE,
  show_computational_time = TRUE,
  show_clinical_recommendations = TRUE,
  show_detailed_metrics = FALSE,
  ensemble_best_models = FALSE,
  save_best_models = FALSE,
  set_seed = TRUE,
  seed_value = 42,
  parallel_processing = TRUE,
  verbose_output = FALSE
)Arguments
- data
- The data as a data frame for algorithm comparison. 
- vars
- . 
- facs
- . 
- target
- . 
- targetLevel
- . 
- include_cart
- Include Classification and Regression Trees (CART) algorithm. 
- include_rf
- Include Random Forest ensemble method. 
- include_gbm
- Include Gradient Boosting Machine (requires gbm package). 
- include_xgboost
- Include XGBoost algorithm (requires xgboost package). 
- include_ctree
- Include conditional inference trees (requires party package). 
- validation
- Validation method for fair algorithm comparison. 
- cv_folds
- . 
- cv_repeats
- . 
- bootstrap_samples
- . 
- test_split
- . 
- stratified_sampling
- . 
- primary_metric
- Primary metric for ranking algorithms. 
- statistical_testing
- Perform statistical tests to compare algorithm performance. 
- correction_method
- Correction method for multiple pairwise comparisons. 
- tune_parameters
- Automatically tune key parameters for each algorithm. 
- tuning_method
- . 
- cart_max_depth
- . 
- cart_min_split
- . 
- rf_ntrees
- . 
- rf_mtry_method
- . 
- clinical_context
- . 
- interpretability_weight
- Weight given to interpretability in final recommendations (0=performance only, 1=interpretability only). 
- show_comparison_table
- Display comprehensive comparison table with all metrics. 
- show_performance_plot
- Display box plots comparing algorithm performance. 
- show_roc_comparison
- Display overlaid ROC curves for all algorithms. 
- show_statistical_tests
- Display pairwise statistical test results. 
- show_ranking_table
- Display final algorithm ranking with recommendations. 
- show_computational_time
- Include computational time in comparison. 
- show_clinical_recommendations
- Provide clinical recommendations based on comparison results. 
- show_detailed_metrics
- Show detailed metrics for each algorithm (sensitivity, specificity, etc.). 
- ensemble_best_models
- Create ensemble combining top-performing algorithms. 
- save_best_models
- Save the best-performing models for future use. 
- set_seed
- . 
- seed_value
- . 
- parallel_processing
- Use multiple cores for faster comparison (if available). 
- verbose_output
- Show detailed progress during model comparison. 
Value
A results object containing:
| results$instructions | a html | ||||
| results$algorithm_summary | a html | ||||
| results$comparison_table | a table | ||||
| results$performance_plot | an image | ||||
| results$roc_comparison | an image | ||||
| results$statistical_tests | a table | ||||
| results$ranking_table | a table | ||||
| results$clinical_recommendations | a html | 
Tables can be converted to data frames with asDF or as.data.frame. For example:
results$comparison_table$asDF
as.data.frame(results$comparison_table)