Random Forest and ensemble methods for clinical research and biomarker discovery. Provides high-accuracy predictions with robust feature importance analysis, out-of-bag error estimation, and clinical interpretation guidelines.
Usage
treeensemble(
  data,
  vars = NULL,
  facs = NULL,
  target,
  targetLevel,
  n_trees = 500,
  mtry_method = "auto",
  mtry_custom = 3,
  min_node_size = 5,
  validation = "oob",
  cv_folds = 5,
  test_split = 0.25,
  importance_type = "permutation",
  feature_selection = FALSE,
  max_features = 10,
  clinical_context = "biomarker",
  class_weights = FALSE,
  show_performance_metrics = TRUE,
  show_importance_plot = TRUE,
  show_oob_error = TRUE,
  show_confusion_matrix = TRUE,
  show_clinical_interpretation = TRUE,
  set_seed = TRUE,
  seed_value = 42
)Arguments
- data
- . 
- vars
- . 
- facs
- . 
- target
- . 
- targetLevel
- . 
- n_trees
- . 
- mtry_method
- . 
- mtry_custom
- . 
- min_node_size
- . 
- validation
- . 
- cv_folds
- . 
- test_split
- . 
- importance_type
- . 
- feature_selection
- . 
- max_features
- . 
- clinical_context
- . 
- class_weights
- . 
- show_performance_metrics
- . 
- show_importance_plot
- . 
- show_oob_error
- . 
- show_confusion_matrix
- . 
- show_clinical_interpretation
- . 
- set_seed
- . 
- seed_value
- . 
Value
A results object containing:
| results$instructions | a html | ||||
| results$model_summary | a html | ||||
| results$performance_table | a table | ||||
| results$confusion_matrix | a table | ||||
| results$importance_table | a table | ||||
| results$importance_plot | an image | ||||
| results$oob_error_plot | an image | ||||
| results$clinical_interpretation | a html | 
Tables can be converted to data frames with asDF or as.data.frame. For example:
results$performance_table$asDF
as.data.frame(results$performance_table)