Creates comprehensive lollipop charts for categorical data visualization with emphasis on clinical applications. Lollipop charts are particularly effective for displaying categorical data with a focus on individual values, making them ideal for patient timelines, treatment outcomes, biomarker levels, and comparative clinical assessments.
Details
The lollipop chart function is designed specifically for clinical research applications where categorical data visualization with emphasis on individual values is crucial. Unlike bar charts, lollipop charts reduce ink-to-data ratio and provide cleaner visualization for sparse data or when highlighting specific categories.
Key features:
Flexible orientation (vertical/horizontal)
Advanced sorting options (by value, alphabetical)
Clinical color schemes and themes
Highlighting capabilities for specific categories
Statistical summary integration
Professional publication-ready appearance
Common clinical applications:
Patient timeline visualization
Biomarker level comparisons
Treatment outcome rankings
Survey response visualization
Quality metric displays
Diagnostic test results
Super classes
jmvcore::Analysis
-> ClinicoPath::lollipopBase
-> lollipopClass
Methods
Inherited methods
jmvcore::Analysis$.createImage()
jmvcore::Analysis$.createImages()
jmvcore::Analysis$.createPlotObject()
jmvcore::Analysis$.load()
jmvcore::Analysis$.render()
jmvcore::Analysis$.save()
jmvcore::Analysis$.savePart()
jmvcore::Analysis$.setCheckpoint()
jmvcore::Analysis$.setParent()
jmvcore::Analysis$.setReadDatasetHeaderSource()
jmvcore::Analysis$.setReadDatasetSource()
jmvcore::Analysis$.setResourcesPathSource()
jmvcore::Analysis$.setStatePathSource()
jmvcore::Analysis$addAddon()
jmvcore::Analysis$asProtoBuf()
jmvcore::Analysis$asSource()
jmvcore::Analysis$check()
jmvcore::Analysis$init()
jmvcore::Analysis$optionsChangedHandler()
jmvcore::Analysis$postInit()
jmvcore::Analysis$print()
jmvcore::Analysis$readDataset()
jmvcore::Analysis$run()
jmvcore::Analysis$serialize()
jmvcore::Analysis$setError()
jmvcore::Analysis$setStatus()
jmvcore::Analysis$translate()
ClinicoPath::lollipopBase$initialize()
Examples
if (FALSE) { # \dontrun{
# Basic lollipop chart
result <- lollipop(
data = patient_data,
dep = "biomarker_level",
group = "patient_id"
)
# Horizontal lollipop with sorting
result <- lollipop(
data = treatment_data,
dep = "response_score",
group = "treatment_type",
sortBy = "value_desc",
orientation = "horizontal",
showValues = TRUE
)
# Clinical timeline with highlighting
result <- lollipop(
data = timeline_data,
dep = "days_to_event",
group = "patient_id",
highlight = "high_risk_patient",
showMean = TRUE
)
} # }