ClinicoPath::survival(
data = histopathology,
elapsedtime = "OverallTime",
tint = TRUE,
dxdate = "SurgeryDate",
fudate = "LastFollowUpDate",
explanatory = "LVI",
outcome = "Outcome",
outcomeLevel = NULL,
dod = NULL,
dooc = NULL,
awd = NULL,
awod = NULL,
timetypedata = "ymdhms",
sc = TRUE,
ce = TRUE,
ch = TRUE
)
overall_survival <- ClinicoPath::survival(
data = histopathology,
elapsedtime = "OverallTime",
tint = TRUE,
dxdate = "SurgeryDate",
fudate = "LastFollowUpDate",
explanatory = "LVI",
outcome = "Outcome",
outcomeLevel = NULL,
dod = NULL,
dooc = NULL,
awd = NULL,
awod = NULL,
timetypedata = "ymdhms",
sc = TRUE,
ce = TRUE,
ch = TRUE
)
overall_survival$tCoxtext2
overall_survival$survTableSummary
overall_survival$survTable
overall_survival$subtitle
overall_survival$medianTable
overall_survival$medianSummary
overall_survival$coxTable
overall_survival$coxTable$asDF
overall_survival$coxSummary
# Tip: Save a high-resolution PNG
# overall_survival$plot$saveAs("overall_survival.png")
# Convert to TIFF if needed for journals:
# img <- png::readPNG("overall_survival.png")
# tiff::writeTIFF(what = img, where = "overall_survival.tiff", compression = "none")
Notes
- This vignette shows how to call the same analysis from R that you
access in jamovi’s GUI.
- Keep event coding and time units consistent with your dataset.