Skip to contents

Introduction

The Decision Panel Optimization module in the meddecide package provides a comprehensive framework for optimizing diagnostic test combinations in medical decision-making. This vignette introduces the basic concepts and demonstrates core functionality.

Key Concepts

Testing Strategies

When multiple diagnostic tests are available, they can be combined in different ways:

  1. Single Testing: Use individual tests independently
  2. Parallel Testing: Perform multiple tests simultaneously
    • ANY rule (OR): Positive if any test is positive
    • ALL rule (AND): Positive only if all tests are positive
    • MAJORITY rule: Positive if majority of tests are positive
  3. Sequential Testing: Perform tests in sequence based on previous results
    • Stop on first positive
    • Confirmatory (require multiple positives)
    • Exclusion (require multiple negatives)

Optimization Criteria

The module can optimize test panels based on various criteria:

  • Accuracy: Overall correct classification rate
  • Sensitivity: Ability to detect disease (minimize false negatives)
  • Specificity: Ability to rule out disease (minimize false positives)
  • Predictive Values: PPV and NPV
  • Cost-Effectiveness: Balance performance with resource utilization
  • Utility: Custom utility functions incorporating costs of errors

Installation and Loading

# Install meddecide package
install.packages("meddecide")

# Or install from GitHub
devtools::install_github("ClinicoPath/meddecide")
# Load required packages
library(meddecide)
#> Warning: replacing previous import 'jmvcore::select' by 'dplyr::select' when
#> loading 'meddecide'
library(dplyr)
#> 
#> Attaching package: 'dplyr'
#> The following objects are masked from 'package:stats':
#> 
#>     filter, lag
#> The following objects are masked from 'package:base':
#> 
#>     intersect, setdiff, setequal, union
library(ggplot2)
#> Warning: package 'ggplot2' was built under R version 4.3.3
library(rpart)
#> Warning: package 'rpart' was built under R version 4.3.3
library(rpart.plot)
library(knitr)
#> Warning: package 'knitr' was built under R version 4.3.3
library(forcats)

Basic Example: COVID-19 Screening

Let’s start with a simple example using COVID-19 screening data:

# Examine the data structure
str(covid_screening_data)
#> 'data.frame':    1000 obs. of  8 variables:
#>  $ patient_id   : int  1 2 3 4 5 6 7 8 9 10 ...
#>  $ rapid_antigen: Factor w/ 2 levels "Negative","Positive": 1 2 1 1 1 1 1 1 1 1 ...
#>  $ pcr          : Factor w/ 2 levels "Negative","Positive": 1 2 NA NA 1 1 NA 1 1 NA ...
#>  $ chest_ct     : Factor w/ 2 levels "Normal","Abnormal": 2 1 1 1 1 1 1 1 1 1 ...
#>  $ symptom_score: num  8 6 1 1 5 5 5 4 2 5 ...
#>  $ covid_status : Factor w/ 2 levels "Negative","Positive": 2 2 1 1 1 1 1 1 1 1 ...
#>  $ age          : num  35 33 39 28 62 32 64 23 58 36 ...
#>  $ risk_group   : Factor w/ 3 levels "High","Low","Medium": 2 2 2 2 2 3 3 3 2 2 ...

# Check disease prevalence
table(covid_screening_data$covid_status)
#> 
#> Negative Positive 
#>      851      149
prop.table(table(covid_screening_data$covid_status))
#> 
#> Negative Positive 
#>    0.851    0.149

Running Basic Analysis

# Basic decision panel analysis
covid_panel <- decisionpanel(
  data = covid_screening_data,
  tests = c("rapid_antigen", "pcr", "chest_ct"),
  testLevels = c("Positive", "Positive", "Abnormal"),
  gold = "covid_status",
  goldPositive = "Positive",
  strategies = "all",
  optimizationCriteria = "accuracy"
)

Interpreting Results

The analysis provides several key outputs:

  1. Individual Test Performance: How each test performs alone
  2. Optimal Panel: The best combination of tests
  3. Strategy Comparison: Performance of different testing approaches
  4. Decision Tree: Optimal sequence for testing

Understanding Testing Strategies

Parallel Testing Example

# Simulate parallel testing with ANY rule
# Positive if rapid_antigen OR pcr is positive
parallel_any <- with(covid_screening_data, 
  rapid_antigen == "Positive" | pcr == "Positive"
)

# Create confusion matrix
conf_matrix_any <- table(
  Predicted = parallel_any,
  Actual = covid_screening_data$covid_status == "Positive"
)

print(conf_matrix_any)
#>          Actual
#> Predicted FALSE TRUE
#>     FALSE   573    1
#>     TRUE     25  134

# Calculate metrics
sensitivity_any <- conf_matrix_any[2,2] / sum(conf_matrix_any[,2])
specificity_any <- conf_matrix_any[1,1] / sum(conf_matrix_any[,1])

cat("Parallel ANY Rule:\n")
#> Parallel ANY Rule:
cat(sprintf("Sensitivity: %.1f%%\n", sensitivity_any * 100))
#> Sensitivity: 99.3%
cat(sprintf("Specificity: %.1f%%\n", specificity_any * 100))
#> Specificity: 95.8%

Sequential Testing Example

# Simulate sequential testing
# Start with rapid test, only do PCR if rapid is positive
sequential_result <- rep("Negative", nrow(covid_screening_data))

# Those with positive rapid test
rapid_pos_idx <- which(covid_screening_data$rapid_antigen == "Positive")

# Among those, check PCR
sequential_result[rapid_pos_idx] <- 
  ifelse(covid_screening_data$pcr[rapid_pos_idx] == "Positive", 
         "Positive", "Negative")

# Create confusion matrix
conf_matrix_seq <- table(
  Predicted = sequential_result == "Positive",
  Actual = covid_screening_data$covid_status == "Positive"
)

print(conf_matrix_seq)
#>          Actual
#> Predicted FALSE TRUE
#>     FALSE   851   51
#>     TRUE      0   98

# Calculate metrics
sensitivity_seq <- conf_matrix_seq[2,2] / sum(conf_matrix_seq[,2])
specificity_seq <- conf_matrix_seq[1,1] / sum(conf_matrix_seq[,1])

cat("\nSequential Testing:\n")
#> 
#> Sequential Testing:
cat(sprintf("Sensitivity: %.1f%%\n", sensitivity_seq * 100))
#> Sensitivity: 65.8%
cat(sprintf("Specificity: %.1f%%\n", specificity_seq * 100))
#> Specificity: 100.0%

# Calculate cost savings
pcr_tests_saved <- sum(covid_screening_data$rapid_antigen == "Negative")
cat(sprintf("PCR tests saved: %d (%.1f%%)\n", 
            pcr_tests_saved, 
            pcr_tests_saved/nrow(covid_screening_data) * 100))
#> PCR tests saved: 876 (87.6%)

Cost-Effectiveness Analysis

When costs are considered, the optimal strategy may change:

# Analysis with costs
covid_panel_cost <- decisionpanel(
  data = covid_screening_data,
  tests = c("rapid_antigen", "pcr", "chest_ct"),
  testLevels = c("Positive", "Positive", "Abnormal"),
  gold = "covid_status",
  goldPositive = "Positive",
  strategies = "all",
  optimizationCriteria = "utility",
  useCosts = TRUE,
  testCosts = "5,50,200",  # Costs for each test
  fpCost = 500,            # Cost of false positive
  fnCost = 5000            # Cost of false negative
)

Visualization

Performance Comparison Plot

# Create performance comparison data
strategies <- data.frame(
  Strategy = c("Rapid Only", "PCR Only", "Parallel ANY", "Sequential"),
  Sensitivity = c(65, 95, 98, 62),
  Specificity = c(98, 99, 97, 99.9),
  Cost = c(5, 50, 55, 15)
)

# Plot sensitivity vs specificity
ggplot(strategies, aes(x = 100 - Specificity, y = Sensitivity)) +
  geom_point(aes(size = Cost), alpha = 0.6) +
  geom_text(aes(label = Strategy), vjust = -1) +
  scale_size_continuous(range = c(3, 10)) +
  xlim(0, 5) + ylim(60, 100) +
  labs(
    title = "Testing Strategy Comparison",
    x = "False Positive Rate (%)",
    y = "Sensitivity (%)",
    size = "Cost ($)"
  ) +
  theme_minimal()

Decision Trees

Decision trees provide clear algorithms for clinical use:

# Generate decision tree
covid_tree <- decisionpanel(
  data = covid_screening_data,
  tests = c("rapid_antigen", "pcr", "chest_ct", "symptom_score"),
  testLevels = c("Positive", "Positive", "Abnormal", ">5"),
  gold = "covid_status",
  goldPositive = "Positive",
  createTree = TRUE,
  treeMethod = "cart",
  maxDepth = 3
)

Interpreting the Tree

A typical decision tree output might look like:

1. Start with Rapid Antigen Test
   ├─ If Positive (2% of patients)
   │  └─ Confirm with PCR
   │     ├─ If Positive → COVID Positive (PPV: 95%)
   │     └─ If Negative → COVID Negative (NPV: 98%)
   └─ If Negative (98% of patients)
      ├─ If Symptoms > 5
      │  └─ Perform Chest CT
      │     ├─ If Abnormal → Perform PCR
      │     └─ If Normal → COVID Negative
      └─ If Symptoms ≤ 5 → COVID Negative

Advanced Features

Cross-Validation

Validate panel performance using k-fold cross-validation:

# Run with cross-validation
covid_panel_cv <- decisionpanel(
  data = covid_screening_data,
  tests = c("rapid_antigen", "pcr", "chest_ct"),
  testLevels = c("Positive", "Positive", "Abnormal"),
  gold = "covid_status",
  goldPositive = "Positive",
  crossValidate = TRUE,
  nFolds = 5,
  seed = 123
)

Bootstrap Confidence Intervals

Get uncertainty estimates for performance metrics:

# Run with bootstrap
covid_panel_boot <- decisionpanel(
  data = covid_screening_data,
  tests = c("rapid_antigen", "pcr", "chest_ct"),
  testLevels = c("Positive", "Positive", "Abnormal"),
  gold = "covid_status",
  goldPositive = "Positive",
  bootstrap = TRUE,
  bootReps = 1000,
  seed = 123
)

Best Practices

  1. Start Simple: Begin with individual test performance before combinations
  2. Consider Context: Screening vs. diagnosis requires different strategies
  3. Validate Results: Use cross-validation or separate test sets
  4. Include Costs: Real-world decisions must consider resources
  5. Think Sequentially: Often more efficient than parallel testing
  6. Set Constraints: Define minimum acceptable performance
  7. Interpret Clinically: Statistical optimality isn’t everything

Conclusion

The Decision Panel Optimization module provides a systematic approach to combining diagnostic tests. By considering various strategies, costs, and constraints, it helps identify practical testing algorithms that balance performance with resource utilization.

Next Steps

  • See the “Clinical Applications” vignette for disease-specific examples
  • Review “Advanced Optimization” for complex scenarios
  • Check “Implementation Guide” for deploying algorithms in practice

Session Information

sessionInfo()
#> R version 4.3.2 (2023-10-31)
#> Platform: aarch64-apple-darwin20 (64-bit)
#> Running under: macOS 15.5
#> 
#> Matrix products: default
#> BLAS:   /Library/Frameworks/R.framework/Versions/4.3-arm64/Resources/lib/libRblas.0.dylib 
#> LAPACK: /Library/Frameworks/R.framework/Versions/4.3-arm64/Resources/lib/libRlapack.dylib;  LAPACK version 3.11.0
#> 
#> locale:
#> [1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
#> 
#> time zone: Europe/Istanbul
#> tzcode source: internal
#> 
#> attached base packages:
#> [1] stats     graphics  grDevices utils     datasets  methods   base     
#> 
#> other attached packages:
#> [1] forcats_1.0.0      knitr_1.50         rpart.plot_3.1.2   rpart_4.1.24      
#> [5] ggplot2_3.5.2      dplyr_1.1.4        meddecide_0.0.3.12
#> 
#> loaded via a namespace (and not attached):
#>  [1] gtable_0.3.6            xfun_0.52               bslib_0.9.0            
#>  [4] htmlwidgets_1.6.4       lattice_0.22-7          vctrs_0.6.5            
#>  [7] tools_4.3.2             generics_0.1.4          tibble_3.2.1           
#> [10] proxy_0.4-27            pkgconfig_2.0.3         Matrix_1.6-1.1         
#> [13] KernSmooth_2.23-26      checkmate_2.3.2         data.table_1.17.4      
#> [16] irr_0.84.1              cutpointr_1.2.0         RColorBrewer_1.1-3     
#> [19] desc_1.4.3              uuid_1.2-1              jmvcore_2.6.3          
#> [22] lifecycle_1.0.4         flextable_0.9.9         stringr_1.5.1          
#> [25] compiler_4.3.2          farver_2.1.2            textshaping_1.0.1      
#> [28] codetools_0.2-20        fontquiver_0.2.1        fontLiberation_0.1.0   
#> [31] htmltools_0.5.8.1       class_7.3-23            sass_0.4.10            
#> [34] yaml_2.3.10             htmlTable_2.4.3         pillar_1.10.2          
#> [37] pkgdown_2.1.3           jquerylib_0.1.4         MASS_7.3-60            
#> [40] openssl_2.3.3           classInt_0.4-11         cachem_1.1.0           
#> [43] BiasedUrn_2.0.12        iterators_1.0.14        boot_1.3-31            
#> [46] foreach_1.5.2           fontBitstreamVera_0.1.1 zip_2.3.3              
#> [49] tidyselect_1.2.1        digest_0.6.37           stringi_1.8.7          
#> [52] sf_1.0-21               pander_0.6.6            purrr_1.0.4            
#> [55] labeling_0.4.3          splines_4.3.2           fastmap_1.2.0          
#> [58] grid_4.3.2              cli_3.6.5               magrittr_2.0.3         
#> [61] survival_3.8-3          e1071_1.7-16            withr_3.0.2            
#> [64] backports_1.5.0         gdtools_0.4.2           scales_1.4.0           
#> [67] lubridate_1.9.4         timechange_0.3.0        rmarkdown_2.29         
#> [70] officer_0.6.10          askpass_1.2.1           ragg_1.4.0             
#> [73] zoo_1.8-14              lpSolve_5.6.23          evaluate_1.0.3         
#> [76] epiR_2.0.84             rlang_1.1.6             Rcpp_1.0.14            
#> [79] glue_1.8.0              DBI_1.2.3               xml2_1.3.8             
#> [82] rstudioapi_0.17.1       jsonlite_2.0.0          R6_2.6.1               
#> [85] systemfonts_1.2.3       fs_1.6.6                units_0.8-7