Skip to contents

A dataset for demonstrating Bayesian Decision Curve Analysis (DCA). It typically includes an outcome variable and predictions from one or more models or tests.

Usage

data(bayesdca_test_data)

Format

A data frame with 500 rows and 4 variables:

outcome

Character. The true outcome status (e.g., presence or absence of a condition).

model_prediction

Numeric. Predicted probability or risk score from a statistical model.

binary_test

Integer. Results of a binary diagnostic test, likely coded as 0 or 1.

weak_test

Integer. Results of another binary diagnostic test, potentially with lower accuracy, likely coded as 0 or 1.

Examples

data(bayesdca_test_data)
str(bayesdca_test_data)
#> 'data.frame':	500 obs. of  4 variables:
#>  $ outcome         : chr  "No Disease" "No Disease" "No Disease" "Disease" ...
#>  $ model_prediction: num  0.407 0.363 0.415 0.748 0.931 ...
#>  $ binary_test     : int  0 0 0 0 0 0 0 1 0 0 ...
#>  $ weak_test       : int  0 1 1 1 1 0 0 1 0 0 ...
head(bayesdca_test_data)
#>      outcome model_prediction binary_test weak_test
#> 1 No Disease        0.4071879           0         0
#> 2 No Disease        0.3631134           0         1
#> 3 No Disease        0.4148582           0         1
#> 4    Disease        0.7484752           0         1
#> 5    Disease        0.9307655           0         1
#> 6 No Disease        0.4778732           0         0
summary(bayesdca_test_data$model_prediction)
#>    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
#>  0.0568  0.3730  0.5494  0.5425  0.7172  0.9563