Skip to contents

A simulated dataset for evaluating COVID-19 screening strategies. It includes patient identifiers, results from various screening tests (rapid antigen, PCR, chest CT), symptom scores, actual COVID-19 status, and demographic/risk information.

Usage

data(covid_screening_data)

Format

A data frame with 1000 rows and 8 variables:

patient_id

Integer. Unique patient identifier.

rapid_antigen

Character. Result of rapid antigen test (e.g., "Positive", "Negative").

pcr

Character. Result of PCR test (e.g., "Positive", "Negative").

chest_ct

Character. Result of chest CT scan (e.g., "Normal", "Abnormal", "Not Performed").

symptom_score

Integer. Clinical symptom score, potentially based on a standardized checklist.

covid_status

Character. Actual COVID-19 status, confirmed by a gold standard (e.g., "Positive", "Negative").

age

Integer. Patient's age in years.

risk_group

Character. Patient's risk group (e.g., "High", "Medium", "Low").

Examples

data(covid_screening_data)
str(covid_screening_data)
#> 'data.frame':	1000 obs. of  8 variables:
#>  $ patient_id   : int  1 2 3 4 5 6 7 8 9 10 ...
#>  $ rapid_antigen: Factor w/ 2 levels "Negative","Positive": 1 2 1 1 1 1 1 1 1 1 ...
#>  $ pcr          : Factor w/ 2 levels "Negative","Positive": 1 2 NA NA 1 1 NA 1 1 NA ...
#>  $ chest_ct     : Factor w/ 2 levels "Normal","Abnormal": 2 1 1 1 1 1 1 1 1 1 ...
#>  $ symptom_score: num  8 6 1 1 5 5 5 4 2 5 ...
#>  $ covid_status : Factor w/ 2 levels "Negative","Positive": 2 2 1 1 1 1 1 1 1 1 ...
#>  $ age          : num  35 33 39 28 62 32 64 23 58 36 ...
#>  $ risk_group   : Factor w/ 3 levels "High","Low","Medium": 2 2 2 2 2 3 3 3 2 2 ...
head(covid_screening_data)
#>   patient_id rapid_antigen      pcr chest_ct symptom_score covid_status age
#> 1          1      Negative Negative Abnormal             8     Positive  35
#> 2          2      Positive Positive   Normal             6     Positive  33
#> 3          3      Negative     <NA>   Normal             1     Negative  39
#> 4          4      Negative     <NA>   Normal             1     Negative  28
#> 5          5      Negative Negative   Normal             5     Negative  62
#> 6          6      Negative Negative   Normal             5     Negative  32
#>   risk_group
#> 1        Low
#> 2        Low
#> 3        Low
#> 4        Low
#> 5        Low
#> 6     Medium
table(covid_screening_data$covid_status, covid_screening_data$rapid_antigen)
#>           
#>            Negative Positive
#>   Negative      830       21
#>   Positive       46      103