Skip to contents

A dataset designed for performing Decision Curve Analysis (DCA). It includes patient characteristics, an outcome variable (cardiac_event), and predicted probabilities from several different risk models.

Usage

data(dca_test)

Format

A data frame with 50 rows and 17 variables:

patient_id

Integer. Unique patient identifier.

age

Integer. Patient's age in years.

sex

Character. Patient's sex.

diabetes

Character. Diabetes status (e.g., "Yes", "No").

hypertension

Character. Hypertension status (e.g., "Yes", "No").

smoking

Character. Smoking status (e.g., "Yes", "No").

cholesterol

Integer. Cholesterol level.

troponin

Numeric. Troponin level.

creatinine

Numeric. Creatinine level.

cardiac_event

Character. The outcome variable, indicating if a cardiac event occurred.

basic_model

Numeric. Predicted probability of a cardiac event from a basic model.

enhanced_model

Numeric. Predicted probability from an enhanced model.

biomarker_model

Numeric. Predicted probability from a model including a biomarker.

miscalibrated_model

Numeric. Predicted probability from a deliberately miscalibrated model.

poor_model

Numeric. Predicted probability from a poorly performing model.

risk_category

Character. A categorized risk based on some criteria.

hospital

Character. Hospital identifier or group.

Examples

data(dca_test)
str(dca_test)
#> 'data.frame':	50 obs. of  17 variables:
#>  $ patient_id         : int  1 2 3 4 5 6 7 8 9 10 ...
#>  $ age                : int  67 59 72 61 74 55 68 70 63 76 ...
#>  $ sex                : chr  "Male" "Female" "Male" "Female" ...
#>  $ diabetes           : chr  "Yes" "No" "Yes" "No" ...
#>  $ hypertension       : chr  "No" "Yes" "Yes" "No" ...
#>  $ smoking            : chr  "Former" "Never" "Current" "Never" ...
#>  $ cholesterol        : int  245 198 267 201 234 278 189 298 212 256 ...
#>  $ troponin           : num  2.1 0.8 3.2 1.1 1.8 2.5 0.9 4.1 1.4 2.8 ...
#>  $ creatinine         : num  1.3 0.9 1.6 1 1.2 1.1 0.8 1.8 1.1 1.5 ...
#>  $ cardiac_event      : chr  "Yes" "No" "Yes" "No" ...
#>  $ basic_model        : num  0.234 0.089 0.421 0.067 0.198 0.312 0.123 0.567 0.098 0.389 ...
#>  $ enhanced_model     : num  0.289 0.102 0.523 0.071 0.223 0.398 0.134 0.678 0.112 0.467 ...
#>  $ biomarker_model    : num  0.312 0.098 0.578 0.069 0.234 0.423 0.128 0.723 0.109 0.512 ...
#>  $ miscalibrated_model: num  0.421 0.16 0.758 0.121 0.356 0.562 0.221 0.894 0.176 0.7 ...
#>  $ poor_model         : num  0.156 0.067 0.298 0.045 0.123 0.234 0.089 0.423 0.078 0.267 ...
#>  $ risk_category      : chr  "Moderate" "Low" "High" "Low" ...
#>  $ hospital           : chr  "Hospital A" "Hospital B" "Hospital C" "Hospital A" ...
head(dca_test)
#>   patient_id age    sex diabetes hypertension smoking cholesterol troponin
#> 1          1  67   Male      Yes           No  Former         245      2.1
#> 2          2  59 Female       No          Yes   Never         198      0.8
#> 3          3  72   Male      Yes          Yes Current         267      3.2
#> 4          4  61 Female       No           No   Never         201      1.1
#> 5          5  74   Male       No          Yes  Former         234      1.8
#> 6          6  55 Female      Yes           No Current         278      2.5
#>   creatinine cardiac_event basic_model enhanced_model biomarker_model
#> 1        1.3           Yes       0.234          0.289           0.312
#> 2        0.9            No       0.089          0.102           0.098
#> 3        1.6           Yes       0.421          0.523           0.578
#> 4        1.0            No       0.067          0.071           0.069
#> 5        1.2            No       0.198          0.223           0.234
#> 6        1.1           Yes       0.312          0.398           0.423
#>   miscalibrated_model poor_model risk_category   hospital
#> 1               0.421      0.156      Moderate Hospital A
#> 2               0.160      0.067           Low Hospital B
#> 3               0.758      0.298          High Hospital C
#> 4               0.121      0.045           Low Hospital A
#> 5               0.356      0.123      Moderate Hospital B
#> 6               0.562      0.234          High Hospital C
summary(dca_test$basic_model)
#>    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
#>  0.0560  0.0980  0.2105  0.2600  0.4160  0.6230 
table(dca_test$cardiac_event)
#> 
#>  No Yes 
#>  30  20