Skip to contents

A larger and more comprehensive dataset for Decision Curve Analysis, including patient demographics, clinical risk factors, multiple risk model predictions, and outcome variables in both numeric and character formats.

Usage

data(dca_test_data)

Format

A data frame with 800 rows and 19 variables:

patient_id

Integer. Unique patient identifier.

age

Integer. Patient's age in years.

sex

Character. Patient's sex.

diabetes

Character. Diabetes status.

hypertension

Character. Hypertension status.

smoking

Character. Smoking status.

cholesterol

Integer. Cholesterol level.

troponin

Numeric. Troponin level.

creatinine

Numeric. Serum creatinine level.

cardiac_event_numeric

Integer. Numeric indicator of cardiac event (e.g., 0 or 1).

cardiac_event

Character. Character indicator of cardiac event (e.g., "Yes", "No").

true_risk

Numeric. A simulated true underlying risk score for the patient.

basic_model

Numeric. Predicted probability from a basic risk model.

enhanced_model

Numeric. Predicted probability from an enhanced risk model.

biomarker_model

Numeric. Predicted probability from a model incorporating a biomarker.

miscalibrated_model

Numeric. Predicted probability from a model designed to be miscalibrated.

poor_model

Numeric. Predicted probability from a model with poor discrimination.

risk_category

Character. Categorized risk level based on some criteria.

hospital

Character. Hospital or center identifier.

Examples

data(dca_test_data)
str(dca_test_data)
#> 'data.frame':	800 obs. of  19 variables:
#>  $ patient_id           : int  1 2 3 4 5 6 7 8 9 10 ...
#>  $ age                  : num  72 74 64 60 72 43 73 62 62 54 ...
#>  $ sex                  : chr  "Male" "Male" "Male" "Male" ...
#>  $ diabetes             : chr  "No" "Yes" "Yes" "No" ...
#>  $ hypertension         : chr  "Yes" "No" "Yes" "No" ...
#>  $ smoking              : chr  "Never" "Former" "Current" "Never" ...
#>  $ cholesterol          : num  213 164 248 228 211 223 225 226 183 203 ...
#>  $ troponin             : num  4.1 5.27 2.61 10.58 9.72 ...
#>  $ creatinine           : num  0.79 1.04 1.15 0.9 0.8 1.14 1.35 0.81 1.47 1.27 ...
#>  $ cardiac_event_numeric: int  0 0 0 0 1 0 0 0 1 0 ...
#>  $ cardiac_event        : Factor w/ 2 levels "No","Yes": 1 1 1 1 2 1 1 1 2 1 ...
#>  $ true_risk            : num  0.072 0.175 0.338 0.065 0.049 0.05 0.106 0.056 0.178 0.064 ...
#>  $ basic_model          : num  0.117 0.13 0.135 0.071 0.037 0.016 0.064 0.026 0.104 0.039 ...
#>  $ enhanced_model       : num  0.111 0.148 0.443 0.065 0.06 0.044 0.078 0.063 0.106 0.134 ...
#>  $ biomarker_model      : num  0.093 0.217 0.508 0.064 0.036 0.066 0.169 0.039 0.155 0.093 ...
#>  $ miscalibrated_model  : num  0.21 0.233 0.243 0.129 0.066 0.028 0.115 0.047 0.187 0.069 ...
#>  $ poor_model           : num  0.024 0.264 0.135 0.204 0.137 0.093 0.036 0.088 0.1 0.047 ...
#>  $ risk_category        : Factor w/ 4 levels "Low","Moderate",..: 1 2 3 1 1 1 2 1 2 1 ...
#>  $ hospital             : chr  "Hospital A" "Hospital C" "Hospital C" "Hospital C" ...
head(dca_test_data)
#>   patient_id age    sex diabetes hypertension smoking cholesterol troponin
#> 1          1  72   Male       No          Yes   Never         213     4.10
#> 2          2  74   Male      Yes           No  Former         164     5.27
#> 3          3  64   Male      Yes          Yes Current         248     2.61
#> 4          4  60   Male       No           No   Never         228    10.58
#> 5          5  72 Female       No           No   Never         211     9.72
#> 6          6  43   Male       No           No Current         223     8.30
#>   creatinine cardiac_event_numeric cardiac_event true_risk basic_model
#> 1       0.79                     0            No     0.072       0.117
#> 2       1.04                     0            No     0.175       0.130
#> 3       1.15                     0            No     0.338       0.135
#> 4       0.90                     0            No     0.065       0.071
#> 5       0.80                     1           Yes     0.049       0.037
#> 6       1.14                     0            No     0.050       0.016
#>   enhanced_model biomarker_model miscalibrated_model poor_model risk_category
#> 1          0.111           0.093               0.210      0.024           Low
#> 2          0.148           0.217               0.233      0.264      Moderate
#> 3          0.443           0.508               0.243      0.135          High
#> 4          0.065           0.064               0.129      0.204           Low
#> 5          0.060           0.036               0.066      0.137           Low
#> 6          0.044           0.066               0.028      0.093           Low
#>     hospital
#> 1 Hospital A
#> 2 Hospital C
#> 3 Hospital C
#> 4 Hospital C
#> 5 Hospital B
#> 6 Hospital A
summary(dca_test_data$enhanced_model)
#>    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
#>  0.0100  0.0570  0.1015  0.1374  0.1772  0.6930 
table(dca_test_data$hospital, dca_test_data$cardiac_event)
#>             
#>               No Yes
#>   Hospital A 222  34
#>   Hospital B 223  36
#>   Hospital C 246  39