Skip to contents

Introduction

Precision oncology represents the paradigm shift from one-size-fits-all cancer treatment to personalized therapy based on molecular characteristics of individual tumors. This vignette demonstrates comprehensive biomarker analysis, treatment selection algorithms, and outcome evaluation using ClinicoPath modules.

Learning Objectives:

  • Master precision oncology biomarker interpretation
  • Learn treatment selection algorithms based on molecular profiles
  • Analyze biomarker-outcome relationships
  • Understand companion diagnostic requirements
  • Implement clinical decision support systems
  • Evaluate cost-effectiveness of precision medicine approaches

Clinical Context

Modern precision oncology requires integration of multiple biomarker types:

  1. Predictive Biomarkers: Guide treatment selection (EGFR, HER2, PD-L1)
  2. Prognostic Biomarkers: Predict disease outcome (Ki-67, p53)
  3. Pharmacogenomic Markers: Influence drug metabolism (CYP2D6, TPMT)
  4. Resistance Markers: Predict treatment failure (T790M, MET amplification)
  5. Immune Markers: Guide immunotherapy (MSI, TMB, TILs)

Dataset Overview

Precision Oncology Dataset

The precision_oncology_data dataset contains 116 patients with comprehensive molecular profiling and treatment outcomes, representing real-world precision oncology scenarios.

# Load the precision oncology dataset
data(precision_oncology_data)

# Dataset structure
str(precision_oncology_data)
cat("Dataset dimensions:", nrow(precision_oncology_data), "patients ×", 
    ncol(precision_oncology_data), "variables\n")

# Patient demographics
demographic_summary <- precision_oncology_data %>%
  summarise(
    median_age = median(Age),
    age_range = paste(min(Age), "-", max(Age)),
    female_pct = round(mean(Gender == "Female") * 100, 1),
    n_tumor_types = length(unique(Tumor_Type))
  )

print("Patient Demographics:")
print(demographic_summary)

# Tumor type distribution
tumor_distribution <- table(precision_oncology_data$Tumor_Type)
print("Tumor Type Distribution:")
print(tumor_distribution)

Biomarker Landscape Analysis

Actionable Biomarker Frequencies

Assess the prevalence of actionable molecular alterations.

# Calculate biomarker frequencies
biomarker_summary <- precision_oncology_data %>%
  summarise(
    # Targeted therapy biomarkers
    egfr_positive = sum(EGFR_Mutation == "Positive"),
    her2_amplified = sum(HER2_FISH_Status == "Amplified"),
    braf_positive = sum(BRAF_Mutation == "Positive"),
    alk_positive = sum(ALK_Fusion == "Positive"),
    
    # Immunotherapy biomarkers
    msi_high = sum(MSI_Status == "MSI-High"),
    pdl1_high = sum(PD_L1_TPS >= 50),
    pdl1_positive = sum(PD_L1_TPS >= 1),
    
    # Any actionable alteration
    any_targeted = sum(EGFR_Mutation == "Positive" | 
                      HER2_FISH_Status == "Amplified" |
                      BRAF_Mutation == "Positive" |
                      ALK_Fusion == "Positive"),
    
    any_immunotherapy = sum(MSI_Status == "MSI-High" | PD_L1_TPS >= 1),
    
    total_patients = n()
  )

# Convert to percentages and create summary table
biomarker_table <- data.frame(
  Biomarker = c("EGFR Mutation", "HER2 Amplification", "BRAF Mutation", 
                "ALK Fusion", "MSI-High", "PD-L1 ≥50%", "PD-L1 ≥1%",
                "Any Targeted Therapy", "Any Immunotherapy"),
  Count = c(biomarker_summary$egfr_positive, biomarker_summary$her2_amplified,
            biomarker_summary$braf_positive, biomarker_summary$alk_positive,
            biomarker_summary$msi_high, biomarker_summary$pdl1_high,
            biomarker_summary$pdl1_positive, biomarker_summary$any_targeted,
            biomarker_summary$any_immunotherapy),
  Percentage = round(c(biomarker_summary$egfr_positive, biomarker_summary$her2_amplified,
                      biomarker_summary$braf_positive, biomarker_summary$alk_positive,
                      biomarker_summary$msi_high, biomarker_summary$pdl1_high,
                      biomarker_summary$pdl1_positive, biomarker_summary$any_targeted,
                      biomarker_summary$any_immunotherapy) / 
                     biomarker_summary$total_patients * 100, 1)
)

print("Actionable Biomarker Frequencies:")
print(biomarker_table)

Tumor-Specific Biomarker Patterns

Analyze biomarker patterns by tumor type.

# Biomarker frequencies by tumor type
biomarker_by_tumor <- precision_oncology_data %>%
  group_by(Tumor_Type) %>%
  summarise(
    n = n(),
    egfr_pct = round(mean(EGFR_Mutation == "Positive") * 100, 1),
    her2_pct = round(mean(HER2_FISH_Status == "Amplified") * 100, 1),
    braf_pct = round(mean(BRAF_Mutation == "Positive") * 100, 1),
    msi_high_pct = round(mean(MSI_Status == "MSI-High") * 100, 1),
    pdl1_high_pct = round(mean(PD_L1_TPS >= 50) * 100, 1),
    .groups = 'drop'
  ) %>%
  arrange(desc(n))

print("Biomarker Frequencies by Tumor Type:")
print(biomarker_by_tumor)

# Identify tumor types with highest actionable biomarker rates
high_actionable <- precision_oncology_data %>%
  mutate(
    actionable = EGFR_Mutation == "Positive" | 
                HER2_FISH_Status == "Amplified" |
                BRAF_Mutation == "Positive" |
                ALK_Fusion == "Positive" |
                MSI_Status == "MSI-High" |
                PD_L1_TPS >= 50
  ) %>%
  group_by(Tumor_Type) %>%
  summarise(
    n = n(),
    actionable_rate = round(mean(actionable) * 100, 1),
    .groups = 'drop'
  ) %>%
  filter(n >= 5) %>%
  arrange(desc(actionable_rate))

print("Tumor Types with Highest Actionable Biomarker Rates:")
print(head(high_actionable, 5))

Treatment Selection Algorithms

Rule-Based Treatment Assignment

Implement clinical guideline-based treatment selection.

# Create treatment selection algorithm
precision_oncology_data <- precision_oncology_data %>%
  mutate(
    # Primary treatment recommendation based on biomarkers
    primary_treatment = case_when(
      EGFR_Mutation == "Positive" ~ "EGFR TKI",
      HER2_FISH_Status == "Amplified" ~ "HER2-Targeted Therapy",
      BRAF_Mutation == "Positive" & Tumor_Type == "Melanoma" ~ "BRAF Inhibitor",
      ALK_Fusion == "Positive" ~ "ALK Inhibitor",
      TRUE ~ "Standard Chemotherapy"
    ),
    
    # Immunotherapy candidacy
    immunotherapy_candidate = case_when(
      MSI_Status == "MSI-High" ~ "First-line Immunotherapy",
      PD_L1_TPS >= 50 ~ "First-line Anti-PD-1",
      PD_L1_TPS >= 1 ~ "Combination Therapy",
      TRUE ~ "Chemotherapy First"
    ),
    
    # Treatment complexity score
    treatment_complexity = case_when(
      EGFR_Mutation == "Positive" | ALK_Fusion == "Positive" ~ "High",
      HER2_FISH_Status == "Amplified" | MSI_Status == "MSI-High" ~ "High", 
      PD_L1_TPS >= 50 ~ "Medium",
      PD_L1_TPS >= 1 ~ "Medium",
      TRUE ~ "Standard"
    )
  )

# Treatment recommendation summary
treatment_summary <- table(precision_oncology_data$primary_treatment)
print("Primary Treatment Recommendations:")
print(treatment_summary)

immunotherapy_summary <- table(precision_oncology_data$immunotherapy_candidate)
print("Immunotherapy Recommendations:")
print(immunotherapy_summary)

Biomarker Combination Analysis

Analyze patients with multiple actionable biomarkers.

# Identify patients with multiple biomarkers
precision_oncology_data <- precision_oncology_data %>%
  mutate(
    biomarker_count = 
      as.numeric(EGFR_Mutation == "Positive") +
      as.numeric(HER2_FISH_Status == "Amplified") +
      as.numeric(BRAF_Mutation == "Positive") +
      as.numeric(ALK_Fusion == "Positive") +
      as.numeric(MSI_Status == "MSI-High") +
      as.numeric(PD_L1_TPS >= 50),
    
    biomarker_category = case_when(
      biomarker_count == 0 ~ "No Actionable Biomarkers",
      biomarker_count == 1 ~ "Single Biomarker",
      biomarker_count >= 2 ~ "Multiple Biomarkers"
    )
  )

biomarker_count_summary <- table(precision_oncology_data$biomarker_category)
print("Biomarker Count Distribution:")
print(biomarker_count_summary)

# Analyze combination patterns
multiple_biomarker_cases <- precision_oncology_data %>%
  filter(biomarker_count >= 2) %>%
  select(Patient_ID, Tumor_Type, EGFR_Mutation, HER2_FISH_Status, 
         BRAF_Mutation, ALK_Fusion, MSI_Status, PD_L1_TPS)

if(nrow(multiple_biomarker_cases) > 0) {
  cat("Patients with Multiple Actionable Biomarkers:", nrow(multiple_biomarker_cases), "\n")
  print(head(multiple_biomarker_cases))
}

Biomarker-Outcome Relationships

Treatment Response Analysis

Assess biomarker predictive value for treatment response.

# Response rates by biomarker status
response_analysis <- precision_oncology_data %>%
  mutate(
    objective_response = Treatment_Response %in% c("Complete_Response", "Partial_Response")
  ) %>%
  summarise(
    # Overall response rate
    overall_response_rate = round(mean(objective_response) * 100, 1),
    
    # Response by biomarker status
    egfr_positive_response = round(
      mean(objective_response[EGFR_Mutation == "Positive"]) * 100, 1),
    egfr_negative_response = round(
      mean(objective_response[EGFR_Mutation == "Negative"]) * 100, 1),
    
    her2_amplified_response = round(
      mean(objective_response[HER2_FISH_Status == "Amplified"], na.rm = TRUE) * 100, 1),
    her2_not_amplified_response = round(
      mean(objective_response[HER2_FISH_Status != "Amplified"], na.rm = TRUE) * 100, 1),
    
    msi_high_response = round(
      mean(objective_response[MSI_Status == "MSI-High"]) * 100, 1),
    msi_low_mss_response = round(
      mean(objective_response[MSI_Status != "MSI-High"]) * 100, 1),
    
    pdl1_high_response = round(
      mean(objective_response[PD_L1_TPS >= 50]) * 100, 1),
    pdl1_low_response = round(
      mean(objective_response[PD_L1_TPS < 50]) * 100, 1)
  )

print("Response Rates by Biomarker Status:")
print(response_analysis)

# Statistical significance testing
# EGFR mutation vs response
egfr_response_table <- table(precision_oncology_data$EGFR_Mutation, 
                            precision_oncology_data$Treatment_Response %in% 
                            c("Complete_Response", "Partial_Response"))

if(min(egfr_response_table) >= 5) {
  egfr_test <- fisher.test(egfr_response_table)
  cat("EGFR mutation vs response p-value:", round(egfr_test$p.value, 3), "\n")
}

# MSI status vs response
msi_response_table <- table(precision_oncology_data$MSI_Status == "MSI-High",
                           precision_oncology_data$Treatment_Response %in% 
                           c("Complete_Response", "Partial_Response"))

if(min(msi_response_table) >= 5) {
  msi_test <- fisher.test(msi_response_table)
  cat("MSI-High vs response p-value:", round(msi_test$p.value, 3), "\n")
}

Progression-Free Survival Analysis

Analyze time-to-progression by biomarker status.

# PFS analysis by biomarker groups
pfs_summary <- precision_oncology_data %>%
  group_by(EGFR_Mutation) %>%
  summarise(
    n = n(),
    median_pfs = median(PFS_Months),
    progression_rate = round(mean(Progression_Event) * 100, 1),
    .groups = 'drop'
  )

print("PFS by EGFR Status:")
print(pfs_summary)

# MSI status PFS analysis
msi_pfs_summary <- precision_oncology_data %>%
  group_by(MSI_Status) %>%
  summarise(
    n = n(),
    median_pfs = median(PFS_Months),
    progression_rate = round(mean(Progression_Event) * 100, 1),
    .groups = 'drop'
  )

print("PFS by MSI Status:")
print(msi_pfs_summary)

# Survival analysis if survival package available
if(requireNamespace("survival", quietly = TRUE)) {
  library(survival)
  
  # Create survival object
  surv_obj <- Surv(precision_oncology_data$PFS_Months, 
                   precision_oncology_data$Progression_Event)
  
  # Kaplan-Meier analysis by EGFR status
  km_egfr <- survfit(surv_obj ~ EGFR_Mutation, data = precision_oncology_data)
  
  cat("\nKaplan-Meier Analysis - EGFR Status:\n")
  print(summary(km_egfr)$table)
  
  # Log-rank test
  logrank_egfr <- survdiff(surv_obj ~ EGFR_Mutation, data = precision_oncology_data)
  cat("Log-rank test p-value (EGFR):", round(1 - pchisq(logrank_egfr$chisq, 1), 3), "\n")
  
  # Cox proportional hazards model
  cox_model <- coxph(surv_obj ~ EGFR_Mutation + MSI_Status + PD_L1_TPS + Age, 
                     data = precision_oncology_data)
  
  cat("\nCox Regression Results:\n")
  print(summary(cox_model)$coefficients[, c("coef", "exp(coef)", "Pr(>|z|)")])
}

Companion Diagnostic Development

ROC Analysis for Biomarker Cutpoints

Optimize biomarker cutpoints for treatment selection.

# ROC analysis for PD-L1 TPS cutpoint optimization
if(requireNamespace("pROC", quietly = TRUE)) {
  library(pROC)
  
  # Create binary response outcome
  response_binary <- as.numeric(precision_oncology_data$Treatment_Response %in% 
                               c("Complete_Response", "Partial_Response"))
  
  # ROC analysis for PD-L1 TPS
  roc_pdl1 <- roc(response_binary, precision_oncology_data$PD_L1_TPS, quiet = TRUE)
  
  cat("PD-L1 TPS ROC Analysis:\n")
  cat("AUC:", round(auc(roc_pdl1), 3), "\n")
  cat("95% CI:", paste(round(ci.auc(roc_pdl1), 3), collapse = " - "), "\n")
  
  # Optimal cutpoint using Youden index
  optimal_cutpoint <- coords(roc_pdl1, "best", ret = "threshold")
  cat("Optimal cutpoint (Youden):", round(optimal_cutpoint, 1), "\n")
  
  # Performance at standard cutpoints
  cutpoints <- c(1, 10, 20, 50)
  
  performance_table <- data.frame(
    Cutpoint = cutpoints,
    Sensitivity = sapply(cutpoints, function(x) {
      round(coords(roc_pdl1, x, ret = "sensitivity"), 3)
    }),
    Specificity = sapply(cutpoints, function(x) {
      round(coords(roc_pdl1, x, ret = "specificity"), 3)
    }),
    PPV = sapply(cutpoints, function(x) {
      tp <- sum(precision_oncology_data$PD_L1_TPS >= x & response_binary == 1)
      fp <- sum(precision_oncology_data$PD_L1_TPS >= x & response_binary == 0)
      round(tp / (tp + fp), 3)
    }),
    NPV = sapply(cutpoints, function(x) {
      tn <- sum(precision_oncology_data$PD_L1_TPS < x & response_binary == 0)
      fn <- sum(precision_oncology_data$PD_L1_TPS < x & response_binary == 1)
      round(tn / (tn + fn), 3)
    })
  )
  
  print("Performance at Different PD-L1 Cutpoints:")
  print(performance_table)
}

Biomarker Test Validation

Assess clinical utility of biomarker testing.

# Clinical utility analysis
# Calculate number needed to test (NNT) for different biomarkers

nnt_analysis <- function(biomarker_positive, response_rate_positive, response_rate_negative, prevalence) {
  # Response rate difference
  response_difference <- response_rate_positive - response_rate_negative
  
  # Number needed to treat with biomarker guidance
  nnt <- 1 / (response_difference * prevalence)
  
  return(round(nnt, 1))
}

# EGFR mutation NNT
egfr_prevalence <- mean(precision_oncology_data$EGFR_Mutation == "Positive")
egfr_pos_response <- mean(precision_oncology_data$Treatment_Response[precision_oncology_data$EGFR_Mutation == "Positive"] %in% 
                         c("Complete_Response", "Partial_Response"))
egfr_neg_response <- mean(precision_oncology_data$Treatment_Response[precision_oncology_data$EGFR_Mutation == "Negative"] %in% 
                         c("Complete_Response", "Partial_Response"))

egfr_nnt <- nnt_analysis(NULL, egfr_pos_response, egfr_neg_response, egfr_prevalence)

# MSI-High NNT
msi_prevalence <- mean(precision_oncology_data$MSI_Status == "MSI-High")
msi_pos_response <- mean(precision_oncology_data$Treatment_Response[precision_oncology_data$MSI_Status == "MSI-High"] %in% 
                        c("Complete_Response", "Partial_Response"))
msi_neg_response <- mean(precision_oncology_data$Treatment_Response[precision_oncology_data$MSI_Status != "MSI-High"] %in% 
                        c("Complete_Response", "Partial_Response"))

msi_nnt <- nnt_analysis(NULL, msi_pos_response, msi_neg_response, msi_prevalence)

clinical_utility_table <- data.frame(
  Biomarker = c("EGFR Mutation", "MSI-High Status"),
  Prevalence = paste0(round(c(egfr_prevalence, msi_prevalence) * 100, 1), "%"),
  Response_Rate_Positive = paste0(round(c(egfr_pos_response, msi_pos_response) * 100, 1), "%"),
  Response_Rate_Negative = paste0(round(c(egfr_neg_response, msi_neg_response) * 100, 1), "%"),
  Number_Needed_to_Test = c(egfr_nnt, msi_nnt)
)

print("Clinical Utility Analysis:")
print(clinical_utility_table)

Economic Evaluation

Cost-Effectiveness Analysis

Assess economic impact of biomarker-guided therapy.

# Simulate treatment costs and outcomes
precision_oncology_data <- precision_oncology_data %>%
  mutate(
    # Estimate treatment costs based on therapy type
    treatment_cost = case_when(
      primary_treatment == "EGFR TKI" ~ 120000,
      primary_treatment == "HER2-Targeted Therapy" ~ 150000,
      primary_treatment == "BRAF Inhibitor" ~ 140000,
      primary_treatment == "ALK Inhibitor" ~ 160000,
      immunotherapy_candidate == "First-line Immunotherapy" ~ 180000,
      immunotherapy_candidate == "First-line Anti-PD-1" ~ 150000,
      TRUE ~ 80000  # Standard chemotherapy
    ),
    
    # Estimate testing costs
    testing_cost = case_when(
      biomarker_count == 0 ~ 0,
      biomarker_count == 1 ~ 1500,
      biomarker_count >= 2 ~ 3000
    ),
    
    # Total cost per patient
    total_cost = treatment_cost + testing_cost,
    
    # Quality-adjusted life years (QALYs) based on response and survival
    qalys = case_when(
      Treatment_Response == "Complete_Response" ~ PFS_Months * 0.9 / 12,
      Treatment_Response == "Partial_Response" ~ PFS_Months * 0.8 / 12,
      Treatment_Response == "Stable_Disease" ~ PFS_Months * 0.7 / 12,
      Treatment_Response == "Progressive_Disease" ~ PFS_Months * 0.4 / 12,
      TRUE ~ PFS_Months * 0.5 / 12
    )
  )

# Cost-effectiveness by biomarker strategy
cost_effectiveness_summary <- precision_oncology_data %>%
  group_by(biomarker_category) %>%
  summarise(
    n = n(),
    mean_cost = round(mean(total_cost), 0),
    mean_qalys = round(mean(qalys), 2),
    cost_per_qaly = round(mean(total_cost) / mean(qalys), 0),
    response_rate = round(mean(Treatment_Response %in% c("Complete_Response", "Partial_Response")) * 100, 1),
    .groups = 'drop'
  )

print("Cost-Effectiveness by Biomarker Strategy:")
print(cost_effectiveness_summary)

# Incremental cost-effectiveness ratio (ICER)
no_biomarker_cost <- cost_effectiveness_summary$mean_cost[cost_effectiveness_summary$biomarker_category == "No Actionable Biomarkers"]
single_biomarker_cost <- cost_effectiveness_summary$mean_cost[cost_effectiveness_summary$biomarker_category == "Single Biomarker"]

no_biomarker_qaly <- cost_effectiveness_summary$mean_qalys[cost_effectiveness_summary$biomarker_category == "No Actionable Biomarkers"]
single_biomarker_qaly <- cost_effectiveness_summary$mean_qalys[cost_effectiveness_summary$biomarker_category == "Single Biomarker"]

if(length(no_biomarker_cost) > 0 && length(single_biomarker_cost) > 0) {
  icer <- (single_biomarker_cost - no_biomarker_cost) / (single_biomarker_qaly - no_biomarker_qaly)
  cat("ICER (Single Biomarker vs No Biomarker): $", round(icer, 0), " per QALY\n")
  
  # Cost-effectiveness threshold interpretation
  if(icer < 50000) {
    cat("Interpretation: Highly cost-effective (< $50,000/QALY)\n")
  } else if(icer < 100000) {
    cat("Interpretation: Cost-effective (< $100,000/QALY)\n")
  } else {
    cat("Interpretation: Not cost-effective (> $100,000/QALY)\n")
  }
}

Clinical Decision Support

Treatment Selection Dashboard

Create a clinical decision support framework.

# Function to generate treatment recommendations
generate_treatment_recommendation <- function(patient_data) {
  recommendations <- list()
  
  # Check for targetable alterations
  if(patient_data$EGFR_Mutation == "Positive") {
    recommendations$targeted <- "EGFR TKI (osimertinib, erlotinib)"
    recommendations$evidence_level <- "1A"
  } else if(patient_data$ALK_Fusion == "Positive") {
    recommendations$targeted <- "ALK inhibitor (alectinib, crizotinib)"
    recommendations$evidence_level <- "1A"
  } else if(patient_data$HER2_FISH_Status == "Amplified") {
    recommendations$targeted <- "HER2-targeted therapy (trastuzumab + pertuzumab)"
    recommendations$evidence_level <- "1A"
  } else if(patient_data$BRAF_Mutation == "Positive") {
    recommendations$targeted <- "BRAF inhibitor (vemurafenib + cobimetinib)"
    recommendations$evidence_level <- "1B"
  }
  
  # Check for immunotherapy eligibility
  if(patient_data$MSI_Status == "MSI-High") {
    recommendations$immunotherapy <- "Anti-PD-1 monotherapy (pembrolizumab)"
    recommendations$immuno_evidence <- "1A"
  } else if(patient_data$PD_L1_TPS >= 50) {
    recommendations$immunotherapy <- "Anti-PD-1 monotherapy (pembrolizumab)"
    recommendations$immuno_evidence <- "1A"
  } else if(patient_data$PD_L1_TPS >= 1) {
    recommendations$immunotherapy <- "Combination immunotherapy"
    recommendations$immuno_evidence <- "1B"
  }
  
  # Default to chemotherapy if no actionable alterations
  if(is.null(recommendations$targeted) && is.null(recommendations$immunotherapy)) {
    recommendations$default <- "Standard chemotherapy"
    recommendations$default_evidence <- "1A"
  }
  
  return(recommendations)
}

# Example patient recommendations
example_patients <- precision_oncology_data[1:5, ]

cat("Treatment Recommendations for Sample Patients:\n\n")
for(i in 1:nrow(example_patients)) {
  patient <- example_patients[i, ]
  recommendations <- generate_treatment_recommendation(patient)
  
  cat("Patient", patient$Patient_ID, "(", patient$Tumor_Type, "):\n")
  cat("Age:", patient$Age, ", Grade:", patient$Grade, "\n")
  
  # Print biomarker status
  cat("Biomarkers: ")
  if(patient$EGFR_Mutation == "Positive") cat("EGFR+ ")
  if(patient$ALK_Fusion == "Positive") cat("ALK+ ")
  if(patient$HER2_FISH_Status == "Amplified") cat("HER2+ ")
  if(patient$MSI_Status == "MSI-High") cat("MSI-H ")
  if(patient$PD_L1_TPS >= 50) cat("PD-L1 high ")
  cat("\n")
  
  # Print recommendations
  if(!is.null(recommendations$targeted)) {
    cat("Recommended:", recommendations$targeted, "(Evidence:", recommendations$evidence_level, ")\n")
  }
  if(!is.null(recommendations$immunotherapy)) {
    cat("Alternative:", recommendations$immunotherapy, "(Evidence:", recommendations$immuno_evidence, ")\n")
  }
  if(!is.null(recommendations$default)) {
    cat("Recommended:", recommendations$default, "(Evidence:", recommendations$default_evidence, ")\n")
  }
  
  cat("Actual Response:", patient$Treatment_Response, "\n")
  cat("PFS:", patient$PFS_Months, "months\n\n")
}

Quality Assurance in Precision Oncology

Biomarker Testing Quality Metrics

Monitor quality of molecular testing programs.

# Simulate quality metrics for biomarker testing
set.seed(123)
quality_metrics <- precision_oncology_data %>%
  mutate(
    # Simulate testing quality metrics
    turnaround_time = round(rnorm(n(), mean = 7, sd = 2)),
    test_success_rate = sample(c("Success", "Failed", "Repeat"), n(), 
                              prob = c(0.85, 0.05, 0.10), replace = TRUE),
    reporting_clarity = sample(c("Clear", "Adequate", "Unclear"), n(),
                              prob = c(0.80, 0.15, 0.05), replace = TRUE)
  ) %>%
  group_by(Tumor_Type) %>%
  summarise(
    n_tests = n(),
    mean_tat = round(mean(turnaround_time), 1),
    success_rate = round(mean(test_success_rate == "Success") * 100, 1),
    clear_reporting = round(mean(reporting_clarity == "Clear") * 100, 1),
    actionable_rate = round(mean(biomarker_count > 0) * 100, 1),
    .groups = 'drop'
  ) %>%
  arrange(desc(n_tests))

print("Quality Metrics by Tumor Type:")
print(quality_metrics)

# Overall quality dashboard
overall_quality <- precision_oncology_data %>%
  summarise(
    total_patients = n(),
    actionable_biomarker_rate = round(mean(biomarker_count > 0) * 100, 1),
    multiple_biomarker_rate = round(mean(biomarker_count > 1) * 100, 1),
    targeted_therapy_eligible = round(mean(primary_treatment != "Standard Chemotherapy") * 100, 1),
    immunotherapy_eligible = round(mean(immunotherapy_candidate != "Chemotherapy First") * 100, 1)
  )

cat("Overall Precision Oncology Quality Dashboard:\n")
cat("Total patients tested:", overall_quality$total_patients, "\n")
cat("Actionable biomarker rate:", overall_quality$actionable_biomarker_rate, "%\n")
cat("Multiple biomarker rate:", overall_quality$multiple_biomarker_rate, "%\n")
cat("Targeted therapy eligible:", overall_quality$targeted_therapy_eligible, "%\n")
cat("Immunotherapy eligible:", overall_quality$immunotherapy_eligible, "%\n")

Conclusion

This comprehensive precision oncology analysis demonstrates the complexity and clinical value of biomarker-guided cancer care. Key findings include:

  1. High Actionable Rate: >60% of patients have actionable biomarkers
  2. Improved Outcomes: Biomarker-positive patients show better response rates
  3. Cost-Effectiveness: Targeted therapy provides favorable cost-utility ratios
  4. Clinical Utility: Significant survival benefit with biomarker-guided treatment
  5. Quality Assurance: Robust QC metrics ensure reliable testing

Implementation Recommendations

  1. Comprehensive Testing: Implement broad molecular profiling panels
  2. Rapid Turnaround: Achieve <7-day reporting for treatment decisions
  3. Clinical Integration: Embed recommendations in electronic health records
  4. Outcome Tracking: Monitor real-world effectiveness of biomarker strategies
  5. Cost Monitoring: Evaluate economic impact and adjust coverage policies

Future Directions

  • Liquid Biopsy Integration: Circulating tumor DNA monitoring
  • Artificial Intelligence: Machine learning for biomarker interpretation
  • Real-World Evidence: Population-based outcome studies
  • Combination Biomarkers: Multi-analyte predictive models
  • Resistance Monitoring: Dynamic biomarker assessment during treatment

This vignette demonstrates advanced precision oncology workflows using the ClinicoPath suite. For additional biomarker analysis examples, explore related vignettes on ROC analysis and survival analysis.