Quick Reference Guide for jjstatsplot
ClinicoPath Development Team
2025-06-30
Source:vignettes/general-13-quick-reference.Rmd
general-13-quick-reference.Rmd
jjstatsplot Quick Reference
This quick reference provides essential information for using jjstatsplot efficiently in both jamovi and R.
Function Overview
Function | Purpose | Data Type | jamovi Location |
---|---|---|---|
jjhistostats() |
Distribution analysis | 1 continuous | Continuous → Histogram |
jjscatterstats() |
Bivariate relationships | 2 continuous | Continuous vs Continuous → Scatter Plot |
jjcorrmat() |
Multiple correlations | 2+ continuous | Continuous vs Continuous → Correlation Matrix |
jjbetweenstats() |
Group comparisons | 1 continuous + 1 categorical | Categorical vs Continuous → Box-Violin (Between) |
jjdotplotstats() |
Group means | 1 continuous + 1 categorical | Categorical vs Continuous → Dot Chart |
jjwithinstats() |
Paired comparisons | 2+ continuous (paired) | Categorical vs Continuous → Box-Violin (Within) |
jjbarstats() |
Categorical associations | 1-2 categorical | Categorical vs Categorical → Bar Charts |
jjpiestats() |
Proportional data | 1 categorical | Categorical vs Categorical → Pie Charts |
waffle() |
Distribution visualization | 1 categorical | Distribution → Waffle Charts |
Quick Start Templates
Essential R Code Snippets
Single Variable Analysis
# Histogram
hist_result <- jjhistostats(data = mtcars, dep = "mpg", grvar = NULL)
hist_result$plot
# Multiple variables
multi_hist <- jjhistostats(data = mtcars, dep = c("mpg", "hp", "wt"), grvar = NULL)
multi_hist$plot
Bivariate Analysis
# Scatter plot
scatter_result <- jjscatterstats(data = mtcars, dep = "mpg", group = "hp")
scatter_result$plot
# Correlation matrix
corr_result <- jjcorrmat(data = mtcars, dep = c("mpg", "hp", "wt"))
corr_result$plot
Group Comparisons
# Between groups
between_result <- jjbetweenstats(data = mtcars, dep = "mpg", group = "cyl")
between_result$plot
# Dot chart
dot_result <- jjdotplotstats(data = mtcars, dep = "mpg", group = "cyl")
dot_result$plot
Categorical Analysis
# Bar chart
bar_result <- jjbarstats(data = mtcars, dep = "cyl", group = "am")
bar_result$plot
# Pie chart
pie_result <- jjpiestats(data = mtcars, dep = "cyl")
pie_result$plot
Grouped Analysis
# Any function with grvar parameter
grouped_result <- jjhistostats(
data = mtcars,
dep = "mpg",
grvar = "cyl"
)
grouped_result$plot2 # Note: plot2 for grouped plots
Common Options and Customizations
Statistical Tests by Function
Function | Default Test | Alternative Tests |
---|---|---|
jjhistostats() |
Shapiro-Wilk normality | Anderson-Darling, Kolmogorov-Smirnov |
jjscatterstats() |
Pearson correlation | Spearman, robust correlation |
jjbetweenstats() |
Welch’s ANOVA | Student’s t-test, Kruskal-Wallis |
jjdotplotstats() |
Similar to between-stats | Non-parametric alternatives |
jjwithinstats() |
Paired t-test | Wilcoxon signed-rank |
jjbarstats() |
Chi-square test | Fisher’s exact test |
jjcorrmat() |
Pearson correlations | Spearman, partial correlations |
Troubleshooting Checklist
Export and Reporting
jamovi Export
Right-click plot → Copy
File → Export → [Format]
Results panel → Copy statistical output
R Export
# Save plot
result <- jjhistostats(data = mtcars, dep = "mpg")
ggsave("histogram.png", result$plot, width = 8, height = 6, dpi = 300)
# Extract for further modification
my_plot <- result$plot +
ggplot2::labs(title = "Custom Title") +
ggplot2::theme_minimal()
Statistical Reporting Template
When reporting results, include:
- Sample size: n = X
- Test type: “Welch’s ANOVA was conducted…”
- Test statistic: F(df1, df2) = X.XX
- p-value: p < .001 or exact value
- Effect size: η² = .XX or Cohen’s d = X.XX
- Confidence intervals: 95% CI [X.XX, X.XX]
Example: “A Welch’s ANOVA revealed a significant difference in fuel efficiency across cylinder groups, F(2, 18.03) = 39.70, p < .001, η² = .70, suggesting a large effect.”
Documentation Links
-
Complete jamovi Guide:
vignette("jamovi-user-guide", package = "jjstatsplot")
-
R Programming Guide:
vignette("r-programming-guide", package = "jjstatsplot")
-
Analysis Gallery:
vignette("analysis-gallery", package = "jjstatsplot")
-
Troubleshooting:
vignette("troubleshooting-faq", package = "jjstatsplot")
- ggstatsplot Documentation: indrajeetpatil.github.io/ggstatsplot
Getting Help
Quick Checks
- Try with built-in data (e.g.,
mtcars
,iris
) - Simplify analysis (remove grouping variables)
- Check for recent updates
- Restart jamovi/R session
Report Issues
- Include data example, error message, and steps
- GitHub: sbalci/ClinicoPathJamoviModule/issues
- Email: drserdarbalci@gmail.com
This quick reference covers the essentials for efficient jjstatsplot usage. For detailed examples and advanced usage, consult the comprehensive vignettes listed above.