Skip to contents

Comprehensive missing data analysis and multiple imputation using mice and ggmice packages. Analyze missing data patterns, perform multiple imputation by chained equations (MICE), and visualize imputation results. Includes diagnostic plots for convergence assessment, comparison of observed vs imputed data, and quality evaluation. Perfect for clinical research data preprocessing where missing data is common and proper handling is critical for valid statistical inference.

Usage

missingdata(
  data,
  analysis_vars,
  analysis_type = "pattern",
  n_imputations = 5,
  max_iterations = 5,
  imputation_method = "auto",
  seed_value = 123,
  convergence_check = TRUE,
  show_pattern_plot = TRUE,
  show_pattern_table = TRUE,
  show_correlation_plot = TRUE,
  show_flux_plot = TRUE,
  show_trace_plot = TRUE,
  show_density_plot = TRUE,
  show_stripplot = TRUE,
  show_scatterplot = FALSE,
  show_imputation_summary = TRUE,
  show_interpretation = TRUE
)

Arguments

data

The data as a data frame.

analysis_vars

Variables to include in the missing data analysis and imputation. Can include numeric, factor, and ID variables.

analysis_type

Type of missing data analysis to perform. Pattern analysis explores missing data structure, imputation performs MICE, complete does both.

n_imputations

Number of imputed datasets to generate using MICE algorithm. Typically 5-20 imputations are sufficient for most applications.

max_iterations

Maximum number of MICE iterations per imputation. Default is 5, increase if convergence issues occur.

imputation_method

Default imputation method. Auto-select chooses appropriate methods based on variable types. PMM is robust for continuous variables.

seed_value

Random seed for reproducible imputation results.

convergence_check

Perform convergence diagnostics to ensure MICE algorithm stability.

show_pattern_plot

Display visual representation of missing data patterns.

show_pattern_table

Display tabular summary of missing data patterns.

show_correlation_plot

Display correlation matrix between incomplete variables.

show_flux_plot

Display influx and outflux of missing data patterns.

show_trace_plot

Display convergence trace plots for imputation diagnostics.

show_density_plot

Compare distributions of observed vs imputed data.

show_stripplot

Display strip plots comparing observed and imputed values.

show_scatterplot

Display scatter plots of observed vs imputed data relationships.

show_imputation_summary

Display summary statistics and information about the imputation process.

show_interpretation

Display guidance on missing data analysis and imputation best practices for clinical research.

Value

A results object containing:

results$todoa html
results$pattern_plotan image
results$pattern_tablea html
results$correlation_plotan image
results$flux_plotan image
results$trace_plotan image
results$density_plotan image
results$stripplotan image
results$scatterplotan image
results$imputation_summarya html
results$interpretationa html

Examples

# \donttest{
# Example:
# 1. Select variables for missing data analysis
# 2. Explore missing data patterns and correlations
# 3. Configure imputation methods and parameters
# 4. Run multiple imputation and evaluate convergence
# 5. Compare observed vs imputed data distributions
# }