Advanced Statistical Tests with DescTools
Effect Size Analysis, Goodness of Fit Tests, and Advanced Categorical Analysis
Serdar Balci
Memorial PathologyClinicoPath
last-modified
Source:vignettes/clinicopath-descriptives-17-desctools.Rmd
clinicopath-descriptives-17-desctools.Rmd
Introduction
The desctools
function in ClinicoPath provides access to
advanced statistical tests from the DescTools R package, specifically
designed for clinical and epidemiological research. This comprehensive
tool offers three major categories of statistical analysis:
- Effect Size Analysis - Cohen’s D and Hedges’ g for quantifying practical significance
- Goodness of Fit Tests - Hosmer-Lemeshow test for model validation and normality testing
- Advanced Categorical Tests - Cochran-Armitage trend test and other specialized categorical analyses
When to Use Advanced Statistical Tests
Advanced statistical tests are essential when:
- Effect sizes matter: Moving beyond p-values to understand practical significance
- Model validation needed: Assessing whether logistic regression models fit the data adequately
- Categorical relationships complex: Testing for trends, dose-response relationships, or stratified analyses
- Clinical interpretation crucial: Providing meaningful results for medical decision-making
Data Requirements
The desctools function works with various data types:
- Effect Size Analysis: Requires a grouping variable (2 levels) and a continuous outcome
- Goodness of Fit: Requires fitted probabilities and observed outcomes, or continuous variables for normality testing
- Categorical Tests: Requires categorical variables, ordered exposures, and binary outcomes
# Load required libraries
library(ClinicoPath)
# Load example datasets
data("histopathology")
data("dca_test_data")
data("BreastCancer")
# Display dataset structure
str(histopathology[, c("Group", "Sex", "Age", "Grade", "Death", "MeasurementA")])
## tibble [250 × 6] (S3: tbl_df/tbl/data.frame)
## $ Group : chr [1:250] "Control" "Treatment" "Control" "Treatment" ...
## $ Sex : chr [1:250] "Male" "Female" "Male" "Male" ...
## $ Age : num [1:250] 27 36 65 51 58 53 33 26 25 68 ...
## $ Grade : num [1:250] 2 2 1 3 2 2 1 2 3 3 ...
## $ Death : chr [1:250] "YANLIŞ" "DOĞRU" "DOĞRU" "YANLIŞ" ...
## $ MeasurementA: num [1:250] -1.63432 0.37071 0.01585 -1.23584 -0.00141 ...
Effect Size Analysis
Effect size analysis quantifies the magnitude of differences between groups, providing crucial information about practical significance beyond statistical significance.
Cohen’s D for Group Comparisons
Cohen’s D measures the standardized difference between two group means:
# Basic effect size analysis comparing age between treatment groups
result_basic <- desctools(
data = histopathology,
effect_size_analysis = TRUE,
group_var = "Group",
continuous_var = "Age"
)
print(result_basic)
##
## ADVANCED STATISTICAL TESTS
##
## character(0)
##
## <div style='font-family: Arial, sans-serif;'>
##
## Effect Size Analysis
##
## Group Summary Statistics
##
## <table border='1' cellpadding='5' cellspacing='0'
## style='border-collapse: collapse;'><tr style='background-color:
## #f0f0f0; font-weight:
## bold;'>GroupNMeanSDMinMaxControl12049.82514.4152673Treatment12848.96913.2562573
##
## Effect Size Results
##
## <table border='1' cellpadding='5' cellspacing='0'
## style='border-collapse: collapse;'><tr style='background-color:
## #f0f0f0; font-weight: bold;'>MeasureValueLower CIUpper
## CIMagnitudeCohen's d0.062-0.1870.311Negligible
##
## Clinical Interpretation
##
## <div style='background-color: #f9f9f9; padding: 10px; border-left: 4px
## solid #007acc;'>
##
## Effect Size Interpretation: The effect size is negligible, suggesting
## minimal practical difference between groups.
##
## Cohen's Conventions:
##
## Small effect: d = 0.2Medium effect: d = 0.5Large effect: d = 0.8
Hedges’ Correction for Small Samples
When sample sizes are small (< 20 per group), Hedges’ correction provides a less biased estimate:
# Effect size analysis with Hedges' correction
result_hedges <- desctools(
data = histopathology,
effect_size_analysis = TRUE,
group_var = "Sex",
continuous_var = "MeasurementA",
pooled_sd = TRUE,
hedges_correction = TRUE, # Apply bias correction
effect_ci_level = 0.90,
show_interpretations = TRUE
)
print(result_hedges)
##
## ADVANCED STATISTICAL TESTS
##
## character(0)
##
## <div style='font-family: Arial, sans-serif;'>
##
## Effect Size Analysis
##
## Group Summary Statistics
##
## <table border='1' cellpadding='5' cellspacing='0'
## style='border-collapse: collapse;'><tr style='background-color:
## #f0f0f0; font-weight:
## bold;'>GroupNMeanSDMinMaxMale1280.0960.911-2.4982.104Female1210.0590.829-1.9792.292
##
## Effect Size Results
##
## <table border='1' cellpadding='5' cellspacing='0'
## style='border-collapse: collapse;'><tr style='background-color:
## #f0f0f0; font-weight: bold;'>MeasureValueLower CIUpper
## CIMagnitudeHedges' g0.042-0.1670.251Negligible
##
## Clinical Interpretation
##
## <div style='background-color: #f9f9f9; padding: 10px; border-left: 4px
## solid #007acc;'>
##
## Effect Size Interpretation: The effect size is negligible, suggesting
## minimal practical difference between groups.
##
## Cohen's Conventions:
##
## Small effect: d = 0.2Medium effect: d = 0.5Large effect: d = 0.8
Clinical Example: Biomarker Comparison
Using the BreastCancer dataset to compare cell thickness between benign and malignant cases:
# Clinical application with cancer data
result_clinical <- desctools(
data = BreastCancer,
effect_size_analysis = TRUE,
group_var = "Class",
continuous_var = "Cl.thickness",
pooled_sd = FALSE, # Use separate group variances
hedges_correction = FALSE,
effect_ci_level = 0.95,
cat_var2 = NULL,
show_interpretations = TRUE
)
print(result_clinical)
##
## ADVANCED STATISTICAL TESTS
##
## character(0)
##
## <div style='font-family: Arial, sans-serif;'>
##
## Effect Size Analysis
##
## Group Summary Statistics
##
## <table border='1' cellpadding='5' cellspacing='0'
## style='border-collapse: collapse;'><tr style='background-color:
## #f0f0f0; font-weight:
## bold;'>GroupNMeanSDMinMaxbenign4582.9561.67418malignant2417.1952.429110
##
## Effect Size Results
##
## <table border='1' cellpadding='5' cellspacing='0'
## style='border-collapse: collapse;'><tr style='background-color:
## #f0f0f0; font-weight: bold;'>MeasureValueLower CIUpper
## CIMagnitudeCohen's d-1.505-1.68-1.33Large
##
## Clinical Interpretation
##
## <div style='background-color: #f9f9f9; padding: 10px; border-left: 4px
## solid #007acc;'>
##
## Effect Size Interpretation: The effect size is large and represents a
## substantial clinical difference between groups.
##
## Cohen's Conventions:
##
## Small effect: d = 0.2Medium effect: d = 0.5Large effect: d = 0.8
Goodness of Fit Tests
Goodness of fit tests assess whether statistical models adequately represent the observed data.
Hosmer-Lemeshow Test for Logistic Regression
The Hosmer-Lemeshow test evaluates the calibration of logistic regression models:
# Test model calibration using fitted probabilities
result_hl <- desctools(
data = dca_test_data,
effect_size_analysis = FALSE,
goodness_of_fit = TRUE,
fitted_probs = "basic_model",
observed_outcomes = "cardiac_event_numeric",
hl_groups = 10, # Standard 10 groups
categorical_tests = FALSE,
cat_var1 = NULL,
cat_var2 = NULL,
show_goodness_tests = TRUE,
show_interpretations = TRUE
)
print(result_hl)
##
## ADVANCED STATISTICAL TESTS
##
## character(0)
##
## <div style='font-family: Arial, sans-serif;'>
##
## Goodness of Fit Tests
##
## Hosmer-Lemeshow Goodness of Fit Test
##
## <table border='1' cellpadding='5' cellspacing='0'
## style='border-collapse: collapse;'><tr style='background-color:
## #f0f0f0; font-weight: bold;'>StatisticValuedfp-valueC
## Statistic25.582480.0012
##
## Interpretation: Poor model fit (p ≤ 0.05). Consider model revision or
## additional predictors.
Normality Testing
Anderson-Darling and Jarque-Bera tests assess whether continuous variables follow a normal distribution:
# Test normality of continuous variables
result_normality <- desctools(
data = histopathology,
effect_size_analysis = FALSE,
goodness_of_fit = TRUE,
normality_var = "Age",
show_goodness_tests = TRUE,
show_interpretations = TRUE
)
print(result_normality)
##
## ADVANCED STATISTICAL TESTS
##
## character(0)
##
## <div style='font-family: Arial, sans-serif;'>
##
## Goodness of Fit Tests
##
## Normality Tests
##
## <table border='1' cellpadding='5' cellspacing='0'
## style='border-collapse: collapse;'><tr style='background-color:
## #f0f0f0; font-weight:
## bold;'>TestStatisticp-valueConclusionAnderson-DarlingInf0Non-normalJarque-Bera11.43210.0033Non-normal
Enhanced Model Validation
Testing multiple models with different group sizes:
# Enhanced model with fewer groups for stability
result_enhanced <- desctools(
data = dca_test_data,
effect_size_analysis = FALSE,
goodness_of_fit = TRUE,
fitted_probs = "enhanced_model",
observed_outcomes = "cardiac_event_numeric",
hl_groups = 8, # Fewer groups for small samples
normality_var = "troponin",
show_goodness_tests = TRUE
)
print(result_enhanced)
##
## ADVANCED STATISTICAL TESTS
##
## character(0)
##
## <div style='font-family: Arial, sans-serif;'>
##
## Goodness of Fit Tests
##
## Hosmer-Lemeshow Goodness of Fit Test
##
## <table border='1' cellpadding='5' cellspacing='0'
## style='border-collapse: collapse;'><tr style='background-color:
## #f0f0f0; font-weight: bold;'>StatisticValuedfp-valueC
## Statistic5.67860.4602
##
## Interpretation: Good model fit (p > 0.05). The model adequately fits
## the data.
##
## Normality Tests
##
## <table border='1' cellpadding='5' cellspacing='0'
## style='border-collapse: collapse;'><tr style='background-color:
## #f0f0f0; font-weight:
## bold;'>TestStatisticp-valueConclusionAnderson-DarlingInf0Non-normalJarque-Bera7137.03990Non-normal
Advanced Categorical Tests
Advanced categorical tests examine complex relationships in categorical data, including trends and dose-response patterns.
Cochran-Armitage Trend Test
This test identifies linear trends in proportions across ordered exposure levels:
# Test for trend across tumor grades
result_trend <- desctools(
data = histopathology,
categorical_tests = TRUE,
ordered_exposure = "Grade",
binary_outcome = "Death",
show_categorical_tests = TRUE,
show_interpretations = TRUE
)
print(result_trend)
##
## ADVANCED STATISTICAL TESTS
##
## <div style='color: red; font-weight: bold;'>Error in statistical
## analysis: unused argument (g = exposure_data)
##
## Please check your variable selections and data format.
##
## character(0)
Multiple Categorical Variables
Analyzing relationships between multiple categorical variables:
# Complex categorical analysis
result_complex <- desctools(
data = histopathology,
categorical_tests = TRUE,
cat_var1 = "Group",
cat_var2 = "Sex",
ordered_exposure = "TStage",
binary_outcome = "Outcome",
show_categorical_tests = TRUE
)
print(result_complex)
##
## ADVANCED STATISTICAL TESTS
##
## <div style='color: red; font-weight: bold;'>Error in statistical
## analysis: unused argument (g = exposure_data)
##
## Please check your variable selections and data format.
##
## character(0)
Multiple Testing Correction
When performing multiple statistical tests, correction for multiple comparisons is essential to control the family-wise error rate.
Available Correction Methods
# Analysis with Benjamini-Hochberg FDR correction
result_corrected <- desctools(
data = histopathology,
effect_size_analysis = TRUE,
group_var = "Group",
continuous_var = "Age",
goodness_of_fit = TRUE,
normality_var = "MeasurementA",
categorical_tests = TRUE,
ordered_exposure = "Grade",
binary_outcome = "Death",
multiple_testing = "BH", # False Discovery Rate control
show_effect_sizes = TRUE,
show_goodness_tests = TRUE,
show_categorical_tests = TRUE,
show_interpretations = TRUE
)
print(result_corrected)
##
## ADVANCED STATISTICAL TESTS
##
## <div style='color: red; font-weight: bold;'>Error in statistical
## analysis: unused argument (g = exposure_data)
##
## Please check your variable selections and data format.
##
## <div style='font-family: Arial, sans-serif;'>
##
## Effect Size Analysis
##
## Group Summary Statistics
##
## <table border='1' cellpadding='5' cellspacing='0'
## style='border-collapse: collapse;'><tr style='background-color:
## #f0f0f0; font-weight:
## bold;'>GroupNMeanSDMinMaxControl12049.82514.4152673Treatment12848.96913.2562573
##
## Effect Size Results
##
## <table border='1' cellpadding='5' cellspacing='0'
## style='border-collapse: collapse;'><tr style='background-color:
## #f0f0f0; font-weight: bold;'>MeasureValueLower CIUpper
## CIMagnitudeCohen's d0.062-0.1870.311Negligible
##
## Clinical Interpretation
##
## <div style='background-color: #f9f9f9; padding: 10px; border-left: 4px
## solid #007acc;'>
##
## Effect Size Interpretation: The effect size is negligible, suggesting
## minimal practical difference between groups.
##
## Cohen's Conventions:
##
## Small effect: d = 0.2Medium effect: d = 0.5Large effect: d = 0.8
##
## <div style='font-family: Arial, sans-serif;'>
##
## Goodness of Fit Tests
##
## Normality Tests
##
## <table border='1' cellpadding='5' cellspacing='0'
## style='border-collapse: collapse;'><tr style='background-color:
## #f0f0f0; font-weight:
## bold;'>TestStatisticp-valueConclusionAnderson-DarlingInf0Non-normalJarque-Bera0.74330.6896Normal
##
## character(0)
Comparison of Correction Methods
# Bonferroni correction for strict control
result_bonferroni <- desctools(
data = histopathology,
effect_size_analysis = TRUE,
group_var = "Sex",
continuous_var = "MeasurementB",
multiple_testing = "bonferroni" # More conservative
)
print(result_bonferroni)
##
## ADVANCED STATISTICAL TESTS
##
## character(0)
##
## <div style='font-family: Arial, sans-serif;'>
##
## Effect Size Analysis
##
## Group Summary Statistics
##
## <table border='1' cellpadding='5' cellspacing='0'
## style='border-collapse: collapse;'><tr style='background-color:
## #f0f0f0; font-weight:
## bold;'>GroupNMeanSDMinMaxMale1280.950.573-0.7432.372Female1210.9850.555-0.4792.566
##
## Effect Size Results
##
## <table border='1' cellpadding='5' cellspacing='0'
## style='border-collapse: collapse;'><tr style='background-color:
## #f0f0f0; font-weight: bold;'>MeasureValueLower CIUpper
## CIMagnitudeCohen's d-0.061-0.310.187Negligible
##
## Clinical Interpretation
##
## <div style='background-color: #f9f9f9; padding: 10px; border-left: 4px
## solid #007acc;'>
##
## Effect Size Interpretation: The effect size is negligible, suggesting
## minimal practical difference between groups.
##
## Cohen's Conventions:
##
## Small effect: d = 0.2Medium effect: d = 0.5Large effect: d = 0.8
Comprehensive Analysis Workflow
Complete Statistical Analysis
Combining all three analysis types for a comprehensive evaluation:
# Full analysis pipeline
result_comprehensive <- desctools(
data = histopathology,
# Effect Size Analysis
effect_size_analysis = TRUE,
group_var = "Group",
continuous_var = "Age",
pooled_sd = TRUE,
hedges_correction = FALSE,
effect_ci_level = 0.95,
# Goodness of Fit Tests
goodness_of_fit = TRUE,
normality_var = "MeasurementA",
# Categorical Tests
categorical_tests = TRUE,
ordered_exposure = "Grade",
binary_outcome = "Death",
# Multiple Testing and Display
multiple_testing = "BH",
show_effect_sizes = TRUE,
show_goodness_tests = TRUE,
show_categorical_tests = TRUE,
show_interpretations = TRUE
)
print(result_comprehensive)
##
## ADVANCED STATISTICAL TESTS
##
## <div style='color: red; font-weight: bold;'>Error in statistical
## analysis: unused argument (g = exposure_data)
##
## Please check your variable selections and data format.
##
## <div style='font-family: Arial, sans-serif;'>
##
## Effect Size Analysis
##
## Group Summary Statistics
##
## <table border='1' cellpadding='5' cellspacing='0'
## style='border-collapse: collapse;'><tr style='background-color:
## #f0f0f0; font-weight:
## bold;'>GroupNMeanSDMinMaxControl12049.82514.4152673Treatment12848.96913.2562573
##
## Effect Size Results
##
## <table border='1' cellpadding='5' cellspacing='0'
## style='border-collapse: collapse;'><tr style='background-color:
## #f0f0f0; font-weight: bold;'>MeasureValueLower CIUpper
## CIMagnitudeCohen's d0.062-0.1870.311Negligible
##
## Clinical Interpretation
##
## <div style='background-color: #f9f9f9; padding: 10px; border-left: 4px
## solid #007acc;'>
##
## Effect Size Interpretation: The effect size is negligible, suggesting
## minimal practical difference between groups.
##
## Cohen's Conventions:
##
## Small effect: d = 0.2Medium effect: d = 0.5Large effect: d = 0.8
##
## <div style='font-family: Arial, sans-serif;'>
##
## Goodness of Fit Tests
##
## Normality Tests
##
## <table border='1' cellpadding='5' cellspacing='0'
## style='border-collapse: collapse;'><tr style='background-color:
## #f0f0f0; font-weight:
## bold;'>TestStatisticp-valueConclusionAnderson-DarlingInf0Non-normalJarque-Bera0.74330.6896Normal
##
## character(0)
Clinical Research Applications
Oncology Research Example
Analyzing treatment effectiveness in cancer patients:
# Create subset for oncology analysis
oncology_data <- histopathology[!is.na(histopathology$Grade) &
!is.na(histopathology$Group), ]
# Comprehensive oncology analysis
result_oncology <- desctools(
data = oncology_data,
effect_size_analysis = TRUE,
group_var = "Group",
continuous_var = "OverallTime", # Survival time
hedges_correction = TRUE,
categorical_tests = TRUE,
ordered_exposure = "Grade", # Tumor grade progression
binary_outcome = "Death",
multiple_testing = "BH",
show_interpretations = TRUE
)
print(result_oncology)
##
## ADVANCED STATISTICAL TESTS
##
## <div style='color: red; font-weight: bold;'>Error in statistical
## analysis: unused argument (g = exposure_data)
##
## Please check your variable selections and data format.
##
## <div style='font-family: Arial, sans-serif;'>
##
## Effect Size Analysis
##
## Group Summary Statistics
##
## <table border='1' cellpadding='5' cellspacing='0'
## style='border-collapse: collapse;'><tr style='background-color:
## #f0f0f0; font-weight:
## bold;'>GroupNMeanSDMinMaxControl11916.11213.6392.957.7Treatment12716.87713.4853.158.2
##
## Effect Size Results
##
## <table border='1' cellpadding='5' cellspacing='0'
## style='border-collapse: collapse;'><tr style='background-color:
## #f0f0f0; font-weight: bold;'>MeasureValueLower CIUpper
## CIMagnitudeHedges' g-0.056-0.3060.194Negligible
##
## Clinical Interpretation
##
## <div style='background-color: #f9f9f9; padding: 10px; border-left: 4px
## solid #007acc;'>
##
## Effect Size Interpretation: The effect size is negligible, suggesting
## minimal practical difference between groups.
##
## Cohen's Conventions:
##
## Small effect: d = 0.2Medium effect: d = 0.5Large effect: d = 0.8
##
## character(0)
Biomarker Validation Study
Validating diagnostic biomarkers with effect sizes and model calibration:
# Biomarker validation analysis
result_biomarker <- desctools(
data = BreastCancer,
effect_size_analysis = TRUE,
group_var = "Class",
continuous_var = "Cell.size",
goodness_of_fit = TRUE,
normality_var = "Cl.thickness",
multiple_testing = "holm",
show_interpretations = TRUE
)
print(result_biomarker)
##
## ADVANCED STATISTICAL TESTS
##
## character(0)
##
## <div style='font-family: Arial, sans-serif;'>
##
## Effect Size Analysis
##
## Group Summary Statistics
##
## <table border='1' cellpadding='5' cellspacing='0'
## style='border-collapse: collapse;'><tr style='background-color:
## #f0f0f0; font-weight:
## bold;'>GroupNMeanSDMinMaxbenign4581.3250.90819malignant2416.5732.72110
##
## Effect Size Results
##
## <table border='1' cellpadding='5' cellspacing='0'
## style='border-collapse: collapse;'><tr style='background-color:
## #f0f0f0; font-weight: bold;'>MeasureValueLower CIUpper
## CIMagnitudeCohen's d-2.987-3.207-2.765Large
##
## Clinical Interpretation
##
## <div style='background-color: #f9f9f9; padding: 10px; border-left: 4px
## solid #007acc;'>
##
## Effect Size Interpretation: The effect size is large and represents a
## substantial clinical difference between groups.
##
## Cohen's Conventions:
##
## Small effect: d = 0.2Medium effect: d = 0.5Large effect: d = 0.8
##
## <div style='font-family: Arial, sans-serif;'>
##
## Goodness of Fit Tests
##
## Normality Tests
##
## <table border='1' cellpadding='5' cellspacing='0'
## style='border-collapse: collapse;'><tr style='background-color:
## #f0f0f0; font-weight:
## bold;'>TestStatisticp-valueConclusionAnderson-DarlingInf0Non-normalJarque-Bera44.48610Non-normal
Interpretation Guidelines
Effect Size Interpretation
Cohen’s Conventions: - Small effect: d = 0.2 -
Medium effect: d = 0.5
- Large effect: d = 0.8
Clinical Significance: - Consider clinical context, not just statistical thresholds - Small effects may be clinically meaningful in large samples - Large effects may not be clinically relevant if impractical
Best Practices
Sample Size Considerations
- Effect Size Analysis: Minimum 10 observations per group
- Hosmer-Lemeshow Test: At least 100 observations recommended
- Categorical Tests: Adequate cell counts (≥5 per cell)
Advanced Features
Custom Confidence Levels
# Analysis with 99% confidence intervals
result_99ci <- desctools(
data = histopathology,
effect_size_analysis = TRUE,
group_var = "Group",
continuous_var = "MeasurementA",
effect_ci_level = 0.99, # Higher confidence level
show_interpretations = TRUE
)
print(result_99ci)
##
## ADVANCED STATISTICAL TESTS
##
## character(0)
##
## <div style='font-family: Arial, sans-serif;'>
##
## Effect Size Analysis
##
## Group Summary Statistics
##
## <table border='1' cellpadding='5' cellspacing='0'
## style='border-collapse: collapse;'><tr style='background-color:
## #f0f0f0; font-weight:
## bold;'>GroupNMeanSDMinMaxControl120-0.0690.876-2.4982.049Treatment1290.20.858-1.5472.292
##
## Effect Size Results
##
## <table border='1' cellpadding='5' cellspacing='0'
## style='border-collapse: collapse;'><tr style='background-color:
## #f0f0f0; font-weight: bold;'>MeasureValueLower CIUpper
## CIMagnitudeCohen's d-0.31-0.6390.019Small
##
## Clinical Interpretation
##
## <div style='background-color: #f9f9f9; padding: 10px; border-left: 4px
## solid #007acc;'>
##
## Effect Size Interpretation: The effect size is small but potentially
## clinically meaningful, especially in large samples.
##
## Cohen's Conventions:
##
## Small effect: d = 0.2Medium effect: d = 0.5Large effect: d = 0.8
Flexible Group Configurations
# Hosmer-Lemeshow with different group numbers
result_flexible <- desctools(
data = dca_test_data,
goodness_of_fit = TRUE,
fitted_probs = "biomarker_model",
observed_outcomes = "cardiac_event_numeric",
hl_groups = 6 # Custom group number
)
print(result_flexible)
##
## ADVANCED STATISTICAL TESTS
##
## character(0)
##
## <div style='font-family: Arial, sans-serif;'>
##
## Goodness of Fit Tests
##
## Hosmer-Lemeshow Goodness of Fit Test
##
## <table border='1' cellpadding='5' cellspacing='0'
## style='border-collapse: collapse;'><tr style='background-color:
## #f0f0f0; font-weight: bold;'>StatisticValuedfp-valueC
## Statistic4.604740.3303
##
## Interpretation: Good model fit (p > 0.05). The model adequately fits
## the data.
Summary
The desctools function provides a comprehensive suite of advanced statistical tests essential for clinical research:
Key Features
- Effect Size Analysis: Quantify practical significance with Cohen’s D and Hedges’ g
- Model Validation: Assess logistic regression calibration with Hosmer-Lemeshow test
- Categorical Analysis: Detect trends and dose-response relationships
- Multiple Testing Control: Maintain statistical rigor across multiple comparisons
- Clinical Interpretations: Translate statistical results into clinical meaning
Applications
- Clinical Trials: Effect size analysis for treatment comparisons
- Diagnostic Studies: Model validation for biomarker research
- Epidemiological Research: Trend analysis across exposure levels
- Quality Improvement: Statistical monitoring of clinical processes
Next Steps
- Choose appropriate analysis type based on research question
- Ensure adequate sample sizes for reliable results
- Apply multiple testing correction when appropriate
- Focus on clinical interpretation alongside statistical significance
- Consider effect sizes and confidence intervals, not just p-values
The desctools function bridges the gap between statistical analysis and clinical application, providing the advanced tools needed for rigorous medical research while maintaining accessibility through clear interpretations and comprehensive output.
References
Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Lawrence Erlbaum Associates.
Hosmer, D. W., & Lemeshow, S. (2000). Applied logistic regression (2nd ed.). John Wiley & Sons.
Benjamini, Y., & Hochberg, Y. (1995). Controlling the false discovery rate: A practical and powerful approach to multiple testing. Journal of the Royal Statistical Society, 57(1), 289-300.