Advanced bar chart visualization module implementing 5 different approaches for creating professional bar charts. Inspired by "A Bar Chart 5 Ways" methodology, each approach is optimized for different use cases in clinical research.
Details
This module provides 5 distinct approaches to bar chart visualization:
Basic ggplot2: Clean, straightforward implementation
Polished Presentation: Enhanced styling for presentations
Statistical Annotations: Integrated statistical tests and annotations
Interactive Plotly: Interactive web-based visualization
Publication Ready: Journal-quality formatting and styling
Super classes
jmvcore::Analysis
-> ClinicoPath::advancedbarplotBase
-> advancedbarplotClass
Methods
Inherited methods
jmvcore::Analysis$.createImage()
jmvcore::Analysis$.createImages()
jmvcore::Analysis$.createPlotObject()
jmvcore::Analysis$.load()
jmvcore::Analysis$.render()
jmvcore::Analysis$.save()
jmvcore::Analysis$.savePart()
jmvcore::Analysis$.setCheckpoint()
jmvcore::Analysis$.setParent()
jmvcore::Analysis$.setReadDatasetHeaderSource()
jmvcore::Analysis$.setReadDatasetSource()
jmvcore::Analysis$.setResourcesPathSource()
jmvcore::Analysis$.setStatePathSource()
jmvcore::Analysis$addAddon()
jmvcore::Analysis$asProtoBuf()
jmvcore::Analysis$asSource()
jmvcore::Analysis$check()
jmvcore::Analysis$init()
jmvcore::Analysis$optionsChangedHandler()
jmvcore::Analysis$postInit()
jmvcore::Analysis$print()
jmvcore::Analysis$readDataset()
jmvcore::Analysis$run()
jmvcore::Analysis$serialize()
jmvcore::Analysis$setError()
jmvcore::Analysis$setStatus()
jmvcore::Analysis$translate()
ClinicoPath::advancedbarplotBase$initialize()