Skip to contents

Intuitive survival analysis using the iwillsurvive package with user-friendly interface, automatic data preparation, and comprehensive visualization options.

Usage

jiwillsurvive(
  data,
  analysis_type = "survival_model",
  time_var,
  event_var,
  group_var,
  start_date_var,
  end_date_var,
  derive_followup = FALSE,
  followup_units = "days",
  confidence_level = 0.95,
  show_risk_table = TRUE,
  show_median_survival = TRUE,
  show_confidence_bands = TRUE,
  show_censoring_marks = TRUE,
  plot_style = "iwillsurvive",
  color_palette = "default",
  plot_title = "",
  x_label = "",
  y_label = "",
  time_breaks = "",
  legend_position = "right",
  followup_plot_type = "histogram",
  show_statistics = TRUE,
  show_survival_table = TRUE,
  show_interpretation = TRUE,
  time_points = "",
  export_data = FALSE
)

Arguments

data

The data as a data frame.

analysis_type

Type of survival analysis to perform.

time_var

Time-to-event or follow-up time variable.

event_var

Event indicator variable (1=event, 0=censored).

group_var

Variable for group comparison.

start_date_var

Start date for follow-up calculation.

end_date_var

End date for follow-up calculation.

derive_followup

Whether to automatically derive follow-up time from dates.

followup_units

Units for follow-up time calculation.

confidence_level

Confidence level for survival estimates.

show_risk_table

Whether to display risk table below survival plot.

show_median_survival

Whether to display median survival times.

show_confidence_bands

Whether to display confidence intervals around survival curves.

show_censoring_marks

Whether to mark censored observations on survival curves.

plot_style

Visual style for survival plots.

color_palette

Color palette for group comparisons.

plot_title

Custom title for the survival plot.

x_label

Custom label for time axis.

y_label

Custom label for survival probability axis.

time_breaks

Custom time points for axis (comma-separated).

legend_position

Position of the legend in the plot.

followup_plot_type

Type of follow-up visualization.

show_statistics

Whether to display statistical test results.

show_survival_table

Whether to display survival summary table.

show_interpretation

Whether to include clinical interpretation.

time_points

Specific time points for survival estimates (comma-separated).

export_data

Whether to include processed data in output.

Value

A results object containing:

results$instructionsa html
results$survivalPlotan image
results$survivalStatsa html
results$survivalTablea table
results$interpretationa html
results$kmPlotan image
results$kmStatsa html
results$kmTablea table
results$followupPlotan image
results$prepTexta html
results$dataOutputa html

Tables can be converted to data frames with asDF or as.data.frame. For example:

results$survivalTable$asDF

as.data.frame(results$survivalTable)

Examples

# \donttest{
# Example usage:
library(iwillsurvive)
#> Error in library(iwillsurvive): there is no package called ‘iwillsurvive’
# Derive follow-up columns
data <- derive_followup_days(data, start_date, end_date)
#> Error in derive_followup_days(data, start_date, end_date): could not find function "derive_followup_days"
# Fit survival model
model <- iwillsurvive(time, event, data = data)
#> Error in iwillsurvive(time, event, data = data): could not find function "iwillsurvive"
# Plot results
plot(model)
#> Error: object 'model' not found
# }